User Mobility for Opportunistic Ad Hoc Networking

WMCSA 2004

Jing Su, Alvin Chin, Anna Popivanova, Ashvin Goel[†], Eyal de Lara

Department of Computer Science [†]Department of Electrical and Computer Engineering University of Toronto

http://www.cs.toronto.edu/~jingsu

Overview

IER

- Motivation
- Experiment
- Results
- Conclusions
- Related Work

- Can a network be built on pairwise interaction?
- Can routing algorithms be improved?
 - Exploit predictability in user mobility
 - Explore replication and latency trade-off
- Evaluate research using real mobility

Applications

- ZebraNET, SWIM
- Infrastructure-less research or military networks
- Supplement to infrastructure networks
 - Improve power or cost
 - Extend coverage and availability

- Collect traces of pairwise contact
 - Give devices to human test subjects
 - Devices search for other test subjects
 - Collect data at end of study
- Trace-based simulation to determine network characteristics

- Provide incentive to carry device
 - Use currently available mobile devices
 - Instrumentation software shouldn't disrupt user
- Go for whole work-day on single charge
- Catch serendipitous contact
 - even when user is not aware
- Chose Palm devices, using Bluetooth
 - ▶ 802.11 has 10x power requirement over Bluetooth

Experimental Setup

- 20 Mobile Devices
 - Palm Tungsten T
 - Given to subjects to carry around
- 3 Stationary Devices
 - Palm m125
 - Placed near high-traffic locations
 - Simulate infrastructure

- "Pings" have to be spaced for power management
- Want to catch serendipitous contact
 - Need to search at least once every 10 seconds

- "Pings" have to be spaced for power management
- Want to catch serendipitous contact
 - Need to search at least once every 10 seconds

- "Pings" have to be spaced for power management
- Want to catch serendipitous contact
 - Need to search at least once every 10 seconds

- "Pings" have to be spaced for power management
- Want to catch serendipitous contact
 - Need to search at least once every 10 seconds

- "Pings" have to be spaced for power management
- Want to catch serendipitous contact
 - Need to search at least once every 10 seconds

WMCSA 2004 -- University of Toronto -- Jing Su

Search Protocol

- Synchronized clocks
- Bluetooth is half duplex
- Gives 8-10 hours battery life
- May miss data
- Our results are conservative

User Studies

- 18 Graduate students
 - 2.5 weeks, Autumn 2003
 - 9 in CS, 9 in ECE
- 20 Undergraduate students
 - ▶ 8 weeks, Spring 2004
 - ▶ 10 in CS, 10 in ECE

- Reachability
- End-to-end latency
- Latency versus replication trade-off
- User experiences

Reachability (study #1)

- User Study #1
- 21 nodes total
 18 Mobile
 - ▶ 3 Stationary

Reachability (study #2)

- Packet creation
 - When node meets new node
- Packet propagation
 - Epidemic
 - Unlimited bandwidth
 - Unlimited memory

End-to-End Latency (All Packets)

JER

- Most nodes communicated infrequently
- Look at select node pairs that communicate frequently
 - Called "social nodes"
 - ▶ 18 to 08, 15 to 02
- We expect our best-case to be representative of average case in a larger network

End-to-End Latency for Social Nodes

ER

Distribution of Intermediaries

WMCSA 2004 -- University of Toronto -- Jing Su

EF

Latency versus Replication Trade-off

- Minimal replication
 - Who should be the next hop neighbour?
 - Prefer certain neighbours
- Efficient source routing using biased handoff

18 to 08		15 to 02	
Handoff	% First Copy	Handoff	% First Copy
Node	Arrival	Node	Arrival
12	38.4	14	62.9
10	33.6	11	14.3
11	10.9	07	10.8
06	10.7	06	6.0
13	6.2	23	3.9
19	0.2	16	0.6
	I	05	0.6
		17	0.5
		03	0.3
		20	0.1
		09	0.1

User Experiences

Chilversting Chilversting Chilversting Chilversting Corona

- Graduate students
 - Used devices sparingly
 - Treated them very carefully
 - Power conservation protocol worked well
- Undergraduate students
 - Frequently used device
 - Many filled the memory with games
 - Power conservation protocol was not sufficient

Related Work

- Jetcheva et al 2003, Ad Hoc City Buses
- Zhao et al 2004, Message Ferries
- Kotz et al 2002, Analysis of Wireless Networks
- Herrmann 2003, Modeling Sociological Aspects
- Wang et al 2004, Postmanet
- Jain et al 2004, Delay Tolerant Networks

Conclusion

• Lessons

- Current wireless devices need better application-level control/hints for power management
- Context aware computing will be a challenge
- Pairwise contact enables building network for latency insensitive packets
- Biased handoff can be used to improve routing

- Want "denser" data
- Practical algorithm to determine biased handoff
- Using data to evaluate mobility models

Reachability (user study #1)

Reachability (user study #2)

