
A Framework for Context-Aware Privacy of Sensor Data on
Mobile Systems

Supriyo Chakraborty, Kasturi Rangan Raghavan
Matthew P. Johnson, Mani B. Srivastava

University of California, Los Angeles
{supriyo, kasturir, mpjohnson, mbs}@ucla.edu

ABSTRACT
We study the competing goals of utility and privacy as they
arise when a user shares personal sensor data with apps on a
smartphone. On the one hand, there can be value to the user
for sharing data in the form of various personalized services
and recommendations; on the other hand, there is the risk of
revealing behaviors to the app producers that the user would
like to keep private. The current approaches to privacy,
usually defined in multi-user settings, rely on anonymization
to prevent such sensitive behaviors from being traced back
to the user—a strategy which does not apply if user identity
is already known, as is the case here.

Instead of protecting identity, we focus on the more gen-
eral problem of choosing what data to share, in such a
way that certain kinds of inferences—i.e., those indicating
the user’s sensitive behavior—cannot be drawn. The use
of inference functions allows us to establish a terminology
to unify prior notions of privacy as special cases of this
more general problem. We identify several information dis-
closure regimes, each corresponding to a specific privacy-
utility tradeoff, as well as privacy mechanisms designed to
realize these tradeoff points. Finally, we propose ipShield
as a privacy-aware framework which uses current user con-
text together with a model of user behavior to quantify an
adversary’s knowledge regarding a sensitive inference, and
obfuscate data accordingly before sharing. We conclude by
describing initial work towards realizing this framework.

Keywords
Behavioral Privacy, Context-awareness, Inferences, Model-
based Privacy, Android, ipShield

1. INTRODUCTION
Smartphones with onboard and externally connected body-

worn sensors are capable of tracking our locations and so-
cial neighborhoods, monitoring physiological markers, and
learning about our evolving social dynamics. The raw data
collected are increasingly being used to infer our personal,
social, work and urban contexts. These contexts are in
turn acquired by a growing ecosystem of context-aware apps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMobile’13, February 26–27, 2013, Jekyll Island, Georgia, USA.
Copyright 2013 ACM 978-1-4503-1421-3/13/02 ...$15.00.

X:= (P, Q, M) Y
Privacy

Mechanism

{f1(Y),..., fn(Y)}

{g1(Y),..., gn(Y)}

White List

Black List

Data Inferences

Figure 1: A simplified information flow scenario from

users to app producers. The shared data is used for

computing various inferences.

to provide us with personalized app experiences such as
behavior-tailored insurance plans, mobile health (mHealth)
diagnostics and customized recommendations to enrich our
social and personal interactions (or targeted advertising).
We refer to the benefit to the user of such personaliza-
tion as utility. Embedded within the identity-annotated
time-series of shared sensor data is the user’s full behav-
ioral footprint, to the minutest detail, including many that
she may wish to keep private. Users are often unaware of
the possible (mis)use of their personal information by the
data-consuming untrusted apps, causing information asym-
metry between information providers (users) and consumers
(apps.), leading to a lemon market [25]: users are increas-
ingly skeptical of app producers’ privacy policies, with no
way of verifying good policies, and so providers have little
incentive to abide by them, leading to more user skepticism,
in a negative feedback spiral.

Information flow from users to apps is summarized in
Fig. 1. Broadly speaking, the shared sensor data X has:
(a) a set of personal identifiers P , such as name and SSN
associating it to the user; (b) a set of quasi-identifiers Q,
such as age, gender, zip code, which when combined with
auxiliary information sources can possibly identify the user;
and (c) a set M , containing data values corresponding to the
measurement. Shared data is represented by Y and is used
by the apps to compute various inferences, some of which
can be sensitive (i.e., are such that the user wishes them to
remain private). Consider the following examples:

E1: A user shares her accelerometer data X with an mHealth
app to monitor her overall activity level f(Y) but faces
the risk of revealing her exact activity type g(Y), which
is also inferable from the same data.

E2: A user desiring a safe driver discount f(Y) on insur-
ance rates may be willing to share her location and
accelerometer data X. However, periodic location re-
lease near a place of worship may reveal religious pref-
erences g(Y).

E3: A user is required to share EKG and respiration data

X with an insurance company which uses the data to
check for heart and respiratory disorders f(Y), and
provide discounted rates. However, the same data can
be used to detect onset of stress g(Y), a behavior the
user wants to keep private.

If Y is the same as X (no privacy mechanism is used), the
presence of set P implies that the inferred sensitive behaviors
may now be traceable back to the user, violating her privacy.

Prior work on privacy mechanisms is centered around two
design objectives: data anonymization and incomplete re-
construction. The process of anonymization includes the
removal of P and the suitable obfuscation of Q present in X
to break the association between the data and the user. In
a multi-user setting where privacy of an entire database of
user data is desired, measures such as k-anonymity [24] and
l-diversity [17] are used to determine the level of obfusca-
tion required to make the user anonymous or indistinguish-
able within a subpopulation, achieving privacy-in-numbers.
However, the breakdown of anonymization in the face of
auxiliary information [18, 11, 23] has prompted the design
of measures such as differential privacy [6] which, in a multi-
user setting, recommend use of structured noise to perturb
aggregate query responses and protect the membership (i.e.,
presence or absence) of an individual within a database. The
second objective is to prevent complete reconstruction of X
from Y . To achieve this in addition to anonymization, the
measurements in M are also adequately perturbed [22]. By
preventing reconstruction, the goal is to protect against pri-
vate inferences which could be made from X alone. However,
it has been shown that partially reconstructed data can be
used to make inferences about private behaviors [23, 11].

Now consider instead a setting in which a single user
shares a time-series of sensor data annotated with identity
information, as illustrated in E1 − E3. This motivates the
investigation: what are the privacy and utility goals appro-
priate to such a setting? The traditional notion of protect-
ing user identity is no longer a concern because the apps
under consideration (e.g., mHealth, customized insurance
plans) require user identity for providing personalized ser-
vices (utility). Thus, instead of identity, a user is interested
in protecting the privacy of sensitive behaviors which can
be inferred from the shared data. Another consequence of
this single-user setting is that privacy measures relying upon
privacy-in-numbers within a subpopulation do not apply.

In this paper, we consider the general form of the privacy
problem given above and make three main contributions.
First, we give a very general privacy model in which two
sets of inferences (the white and black lists shown in Fig. 1)
constitute utility and private behaviors, respectively. These
inferences are marked as f(Y) and g(Y) in examples E1 −
E3. The use of inference functions allows us to establish
a terminology to unify prior notions of anonymization- and
reconstruction-based privacy as special cases of the more
general problem. Second, we identify several information
disclosure regimes, each corresponding to a specific privacy-
utility tradeoff, and privacy mechanisms designed to realize
these tradeoff points. These insights lead us to our third
contribution: the conceptualization of ipShield—a privacy-
aware framework which uses current user context together
with a model of user behavior to quantify an adversary’s
knowledge regarding a given sensitive inference, and then
apply an appropriate privacy mechanism on the data before
sharing. We conclude by describing the initial work we have
done towards realization of the framework.

2. PRIVACY PROBLEM AND CHOICES
We define an inference function as a classifier which takes

shared data as input and performs a classification of the user
as being in a particular behavior state, e.g., into one of the
activity states (walking, running, still) in E1, one of several
religions in E2, or the onset of stress in E3. Classifiers are
machine learning algorithms (e.g., supervised, unsupervised,
reinforcement) used to learn and then classify based on pat-
terns in the data. For example, in supervised learning, these
patterns are learned using labeled data provided by the user.

The problem of protecting the privacy of sensitive infer-
ences is characterized by a tradeoff between the application’s
need to obtain information for providing utility to the user
and the user’s need to control the information shared for
protecting privacy. As shown in Fig. 1, our privacy no-
tion is defined in terms of what can be extracted from the
shared data Y . The user specifies his privacy preferences
as a blacklist of inferences, {g1(Y), . . . , gn(Y)}, and the app
provides its utility requirements as a whitelist of inferences,
{f1(Y), . . . , fn(Y)}. The privacy mechanisms are designed
to ensure the app can effectively compute whitelisted in-
ferences to some degree of accuracy, but where the app
cannot draw the blacklisted inferences. Ideally, any data
shared with an app should not reveal any more information
than what is already known to the app about the black-
listed inferences from prior (population-scale) knowledge or
side-channels. We remark that this is a general formulation
of the privacy problem, and that the previously mentioned
privacy mechanisms such as anonymization and protection
against reconstruction attacks can be thought of as carefully
chosen blacklist inferences.

2.1 Information Disclosure Regimes
The various possible tradeoff points for the utility and

privacy objectives define a spectrum of information disclo-
sure regimes that a user can operate in. At one extreme,
corresponding to zero disclosure, the user shares no infor-
mation at all, ensuring complete privacy but at the cost of
complete loss in utility. At the other extreme, correspond-
ing to full disclosure, all information is shared. Now the
user achieves utility at the cost of complete loss of privacy.
Each point in this spectrum is realizable by using an appro-
priately designed privacy mechanism, now we discuss some
two operation points of particular interest.

1. Maximum Privacy Disclosure (MaxP): We re-
lease information (some transformation of X) such that only
the desired utility (whitelisted functions, and consequences
inferable from them) can be computed from the released in-
formation. This point corresponds to targeted disclosure.

2. Maximum Utility Disclosure (MaxU): We release
information which preserve all characteristics of X, except
those which can be used to violate privacy (blacklisted func-
tions). This point corresponds to targeted hiding.

2.2 Realization of the Privacy Mechanisms
We define a privacy mechanism as a two-step process: first

identifying the data to be shared (e.g., the subset of features,
data samples, inferences, data types, etc.) and then applying
obfuscation to the data before sharing. Below, we enumerate
a set of potential privacy mechanisms.

1. Feature Selection: Instead of the high-dimensional
data X, from which information flow is hard to control [19,
18] we extract a set of features F = {h1(X), . . . , hn(X)} and
use them to represent the data in a lower-dimensional space.

{f1(Y),..., fn(Y)}

{g1(Y),..., gn(Y)}

{h1(X),.., hn(X)} White List

Black List

X Feature Selection

Feature Perturbation

Data Features Privacy Mechanism Inferences

Y

(a) Feature selection and perturbation steps for MaxP and MaxU,
respectively.

X

Encrypt Inferences (black box)

Enc(X)
Y SFE (Y)

homomorphic(Y)

Dec(Z)

Z

Privacy
Mechanism

{f1(X),..., fn(X)}
White List

Inferences Decrypt

{fi(X)/gi(X)}

Data

(b) SFE and Homomorphic encryption for black-
box computation of whitelisted functions.

Figure 2: Different realizations of privacy mechanisms.

The functions hi(X) can represent features like mean, vari-
ance, Fourier coefficients, etc., extracted from the data sam-
ples over time. Inferences typically operate in the feature
space and use a subset of F to perform their classification.

To implement MaxP, we observe that by sharing features
we can better control the information shared. The privacy
mechanism (see Fig. 2(a)) selects a subset of features re-
quired by the whitelisted inferences but which do not con-
tribute to the blacklisted ones. The obfuscation step either
suppresses all the other features and shares only the selected
features or synthesizes data X ′ preserving only selected fea-
tures (and their consequences) and nothing else. This mech-
anism requires the app to share information regarding the
features the inferences depend on.

2. Sharing whitelisted inferences: Another privacy
mechanism which also implements MaxP is that of sharing
whitelisted inferences (or suppressing blacklisted ones). The
idea is to compute the inferences on the phone, obfuscate the
results such that they do not reveal any information about
the blacklisted inferences and share the obfuscated results
instead of X. For this to work, the apps need to provide
the exact implementation of the inference algorithm to the
user, which may be proprietary and difficult to share. An
alternate strategy for evaluating the whitelisted inference
functions is to use cryptographic techniques. We suggest
two such techniques (see Fig. 2(b)).

• One-sided Secure Function Evaluation (SFE) can ap-
plied (using, e.g., Yao’s garbled circuit [27]) to evaluat-
ing the inference function. Both parties provide their
inputs (the user provides her sensor data, and the app
the inference function), and the function is evaluated.
Since the protocol is one-sided, only the user obtains
the result of the computation; and the app knows noth-
ing about the user input. The user can then obfuscate
the result before sharing it with the app.

• Homomorphic Encryption [8] allows computation to be
carried out on the cipher text directly, yielding an en-
crypted result of the operations performed on the plain
text. The user performs homomorphic encryption on
the data and sends it to the app, which can then per-
form function evaluation on the encrypted data and
return the encrypted result to the user, who decrypts
it to obtain the result. The second step is to perform
obfuscation of the result before sharing with the app.

While the above techniques allow computation of the in-
ference functions without their disclosure, there is no way
for the user to know if the results computed are for the
whitelisted inferences only. Thus the privacy mechanism
must use other techniques (such as zero knowledge proofs [10],

random spot checks, etc.), to ensure that the correct func-
tions are being evaluated. In addition, while feasible in the-
ory, these techniques are extremely computationally expen-
sive and thus energy-intensive.

3. Random Projection: Following this mechanism (see
Fig. 3), we share projections of the features instead of the
features themselves [16]. That is, we project the features
into a lower dimensional space before sharing. To ensure
that privacy is maintained, the transformation is kept pri-
vate and is known only to the user.

For utility goals, the user furnishes training labels so that
the app can learn a classifier, based on the projected fea-
tures and associated labels, for the whitelisted inferences
(and their consequences) but nothing else. In order to learn
the labels in the embedded space, the key property required
is that pairwise distances between points in the original fea-
ture space be preserved. Fortunately, when the transfor-
mation is derived from randomly generated basis vectors
drawn from an i.i.d. normal distribution, the Johnson Lin-
denstrauss lemma states that this property holds with high
probability when the dimensionality of the new projected
feature space satisfies a certain size constraint [13, 16].

This mechanism eliminates the need to know a priori the
mapping between the inferences and features as required by
the feature selection approach. It places a significant burden
on the app, however, which must now learn the classifier
or the whitelisted inference. An advantage of using this
mechanism is that we can guarantee privacy when there is no
side-channel information, as only the whitelisted inference
labels are shared.

4. Feature Perturbation: We use this mechanism to
realize MaxU (see Fig. 2(a)). We select and transform a spe-
cific set of features, and share everything else. For example,
for an audio signal we can choose pitch as the feature to
transform and use perturbation to obfuscate it. While in-
ferences such as identification of the speaker, which rely on
pitch, are affected, other inferences not depending on pitch
remain accurately computable. One of the drawbacks of this
mechanism is that it does not protect against blacklisted in-
ference functions, which can learn a classifier using the set
of released features instead of the transformed ones.

3. DATA FLOW SCENARIOS
A privacy framework implementing (a possible subset of)

the above privacy mechanisms must fit into existing state-of-
the-art mobile platforms. We investigate the different place-
ment points of such a framework by taking into account the
various data flow scenarios between a user and the apps.

We use the Android OS [1] (see Fig. 4(a)) as represen-
tative of a state-of-the-art mobile system. To simplify our

X {h1(X),.., hn(X)}

Features

Projection

Privacy Mechanism

Y

L1

L2

L3

W
h

ite
 L

ist L
a
b

e
ls

{f1(Y),..., fn(Y)}
White List

Inference
(Learn White List Classifier)Data

Figure 3: Random Projection for sharing whitelisted

functions. We share both projection and the correspond-

ing whitelist labels.

Applications

Application Framework

Lib and Android runtime

Linux Kernel

Sensors

Applications

Mobile Platform

Sensors

(a) (b)

Figure 4: Abstract model of a phone.

presentation, we derive an abstract model that combines the
functionalities of the middle layers into a single block and
call it the mobile platform. Apps running on the phone form
part of the topmost layer (see Fig. 4(b)). We assume that
the platform is trusted to not leak user information whereas
the app layer (running third-party apps) is untrusted. Figs. 5
(a), (b) and (c) illustrate the possible data flows. Compu-
tation local to the phone is performed within the dotted
box. The implementation of the privacy mechanisms will
vary depending on the placement of the privacy framework.

If a locally running app (shown in Fig. 5(a)) is completely
insulated and does not communicate outside the dotted box
then the user need not obfuscate data before sharing. How-
ever, static analysis of app code and information flow track-
ing techniques [7] have revealed the existence of side chan-
nels through which apps leak information to the cloud [9].
To prevent such attacks the framework needs to be placed
between the mobile platform and the app and would re-
quire changes to the platform code. For a cloud-based app
(Fig. 5(b)), the framework can be included as part of the
client implementation. While this would eliminate the need
to make platform changes as described for the previous case,
it would involve modification of the app clients. In addition,
the modified client code would need to be trusted and not
leak information. Finally, with a broker-cloud-hosted app
(Fig. 5(c)), the privacy framework can be pushed to the
trusted server implementing the broker service.

Each placement choice corresponds to a different tradeoff
in terms of implementation complexity. Choices in Figs. 5(b)
and 5(c) are specific to an app client or a broker, and hence
might require significant duplication of implementation ef-
fort. Also, for Figs. 5(a) and 5(b), the implementation has
to be lightweight owing to resource constrained mobile plat-
forms, whereas there is no such restriction when the frame-
work is running on a trusted server as in Fig. 5(c). Without
assuming a trusted broker, we implement our framework as
part of the mobile platform. We can thus intercept and ob-
fuscate data in all the possible scenarios.

4. ipShield: THE PRIVACY FRAMEWORK
We conceptualize ipShield, the inference privacy frame-

work (see Fig. 6) and describe our implementation on an

Mobile Platform

Sensors Sensors Sensors

Mobile Platform

Application Client

Mobile Platform
Privacy Framework

Trusted Broker

Application

Application Server

(a) (b) (c)

Application Server

Application Clientapp1
Privacy Framework

Privacy Framework

Figure 5: Data-flow paths from user to apps. Data is

shared with (a) locally running apps, (b) directly with

cloud-hosted apps. and (c) via trusted broker with cloud-

hosted apps.

Android-based mobile platform. Prior work on privacy frame-
works rely on static privacy policies, or use information flow
techniques to detect potential leakage from apps and ap-
ply binary policies of complete access or no access to data
at all [1, 2, 7]. In comparison, ipShield makes two main
contributions. First, it implements context-aware privacy
policies (blacklist and whitelist specification). Broadly, con-
text refers to a combination of the current physical (e.g.
walking, running, still, smoking), location (e.g. indoor, out-
door, office, home), social (with friends, in meeting), and
even psychological (e.g. stress) state of a user and can be
inferred from a variety of sensor measurements. There is
active research towards creating an operating system ser-
vice [5, 26], which would provide apps with contexts rather
than sensor data. Context-awareness allow users to define
dynamic fine-grained privacy policies depending on current
context – an improvement over the current binary and static
policies. Since the user wants to protect against blacklisted
inferences, possibly when in certain context states, other
contexts are ipso facto safe for data release. Second, ip-
Shield, uses a graphical model to capture initial adversarial
knowledge and its subsequent increase with each disclosure.
It then uses the model to determine the level of obfuscation
required before releasing the data. We present a case for
model-based privacy and follow it up with the design and
initial implementation of the privacy framework.

4.1 A Case for Model-Based Privacy
The degree of obfuscation required depends on the ad-

versary’s capabilities. Prior work has shown that human
behavior, and thus, we can assume, behavioral inferences,
exhibit significant correlation [14], which can be captured
using graphical models [20, 12]. We assume a model-based
adversary that maintains a belief on the blacklisted infer-
ences based on prior knowledge and continuously updates
the model parameters by observing the shared data.

4.1.1 Adversary Model
The maximum amount of information that can be ex-

tracted by an adversary is quantified by the mutual informa-
tion between the whitelisted and the blacklisted inferences.
To compute the mutual information, we need to learn the
joint distribution of the two, which can be done using so-
phisticated graphical models. The mutual information gives
an upper bound on the amount of information which can be
possibly extracted by the adversary.

We assume that the adversarial power is captured us-
ing graphical models such as a Dynamic Bayesian Network
(DBN) or a Markov Chain. The states of the model corre-

spond to the different inferences that could be made using
the shared data. Prior knowledge of the adversary from
auxiliary sources is expressed as the prior probability on the
occurrence of a state and the transition probabilities on the
edges. We track the change in adversarial knowledge by
updating the probabilities with every data release.

4.1.2 Learning the Obfuscation Function
The obfuscation functions are used to transform the data

so that (a) the adversary cannot make the blacklisted infer-
ences; (b) the data utility is preserved; and (c) the obfus-
cated data is plausible, i.e. not so obfuscated that the data
points become outliers which can be easily filtered by the
adversary. However, the obfuscation function only provides
privacy against the graphical model used for the adversary.
This requires that the model be powerful and capture data
dependencies effectively.

Depending on the adversary’s belief we define three dif-
ferent types of obfuscation actions: (a) Suppression, where
data is not released. However, we need to ensure that sup-
pression itself does not increase adversarial knowledge about
sensitive state; (b) Perturbation, where structured noise is
added to increase uncertainty in the blacklisted inferences;
and finally (c) Synthesis, where synthetic data unrelated
to the actual data is generated by sampling the graphical
model, to ensure plausibility of the obfuscated data.

4.2 Design of ipShield

The different layers of ipShield are shown in Fig. 6 and
are explained below.

Sensors: This layer provides access to built-in sensors
on the phone (e.g., accelerometers, GPS, microphones, cam-
era), or external body-worn sensors such as a galvanic skin
response sensor, EKG sensors, or other virtual sensors such
as the calendar (providing event schedules), battery (provid-
ing power status), feature sensor extracting various features
such as mean, variance, etc. from actual sensor measure-
ments (e.g. probes in Funf [3]).

Context Framework: This layer collects data from the
sensors and uses it to identify the current context state of
the user. We have implemented this layer as an extension
to the open-source sensor data collection and dissemination
library Funf [3]. For example, an activity context can be a
decision tree classifier that was trained offline. At runtime,
accelerometer data is given to the classifier, which extracts
features such as mean, variance, and Fourier coefficients,
and uses them to classify the data into activity states such
as walking, running, and still.

Inference Framework: The inference framework takes
the current state, which recall is a set of contexts, and uses
them to compute inferences. This is again done using clas-
sifiers, which are trained offline using contexts and user-
provided labels as training data. For example, presence at
the location of a religious place, together with time of day
and day of week, could be used to make an inference about
religious preferences. These inferences are part of the black
list and white list specified by the user and the apps, respec-
tively.

Privacy Firewall: The privacy firewall comprises of three
different subsystems. First, the graphical model, which is as
mentioned in Section 4.1. Second, the user preferences sub-
system, which allows users and apps to specify the black list
and white list of inferences, respectively. The third subsys-
tem contains the rules and the obfuscation blocks. The rule

block contains the set of privacy policies (similar to rules us-
ing iptables for configuring network firewalls), which specify
the obfuscation action on the sensor data when a specific
context state is true. These policies can be either config-
ured by the user or derived from the white and black lists
using the graphical model. There are two ways a user can
configure these lists. First, we envision that similar to net-
work firewall config files, or spam filtering, a user can obtain
such config lists published by privacy experts and personal-
ize them according to her preferences. Second option that is
currently being researched is the use of crowdsourcing to un-
derstand user expectation of privacy and utility of popular
apps used on the phone [15].

The obfuscation block implements the different actions. If
the obfuscated data does not increase the adversarial knowl-
edge about the sensitive inference, data is released, else, it is
subjected to further iterations of obfuscation before it meets
the privacy and utility requirements.

Application: The privacy firewall is the point at which
data is shared with the apps. While most of the current
apps require sensor data directly, there has been a steady
growth in context-aware apps which take contexts as input
instead of sensor data. Thus, the firewall should implement
interfaces for sharing both obfuscated sensor data as well as
derived contexts.

4.3 Prototype Implementation and Use Case
In [21] we provided an implementation of the changes on

the Android platform required to enforce the context-aware
obfuscated sensor data sharing. For model-based privacy, we
created a prototype of a DBN on the Android platform [4]
and used it to determine when to suppress or release data.
We are currently working towards a privacy rule specifica-
tion framework for user preferences.

As use case, we consider an example of selective suppres-
sion of features extracted from accelerometer data. Activity
level of a user, is a binary decision of being active or in-
active, and can be inferred via decision trees directly from
features over windows of accelerometer data. The adversary
model is also a decision tree that infers the activity type,
such as walking, running, biking, from the same windows of
accelerometer data (E1 in Section 1). Thus, the white list
here is to perform activity level detection and the black list
is to prevent the detection of specific activity type. The ob-
fuscation we perform is selective suppression of features (we
release entropy of Fourier coefficients) such that the activity
type inference is no longer inferable via a decision tree based
adversary.

5. LIMITATIONS AND FUTURE WORK
The general privacy problem of precluding a set of behav-

ioral inferences from being made while ensuring that others
can be made involves a complex interaction of information
theory and machine learning. The problem is well defined
only when the whitelisted inferences do not completely over-
lap the blacklisted inferences, in which case releasing even
the whitelist inferences themselves would violate privacy.
For well defined settings, the challenge lies in finding the
right feature subset or data transformation which will have
an acceptably low mutual information with the blacklisted
inferences.

Our framework offers a context-aware model-based solu-
tion to the problem. The ability of the model to account
for the relationship between a variety of inferences, learning

Sensors

Location Context
indoor/outdoor

Context Framework

Built-In Sensors
GPS, Acc, Mic, Wi-Fi

External Sensors
EKG, GSR

Logical Sensors
calendar, apps running

Applications (Untrusted)

medical studies

location services

social networking

participatory sensing

context-aware
apps

...

Location Context
home/office/restaurant

Activity Context
walking/running/sleeping

Activity Context
active/still

Social Context
friends/colleagues

Physical Context
stress/smoking

Privacy Firewall

Relation
Model (DBN)

Privacy Mechanism
+ Rules

User Preferences
white/black list

Inference FrameworkInference Framework

S

S

S

S

I

C

C

C

Religion Medical Condition Physiological State

P
ri

v
ac

y
 F

ra
m

e
w

o
rk

Figure 6: Inference Privacy Framework. S = sensor

data, C = context state, I = inference.

accuracy based on training data, and finally the feature set
corresponding to the whitelist inferences are all key to the
success of the framework. In addition, apps which use data
that manifest dependencies over long periods of time, maybe
hard to protect against, owing to order constraints on the
graphical model.

Finally, our adversary model is limited because it does
not account for the relationship between the app producers.
A possible enrichment to the model could be to augment it
with information from social networks which model personal
relationships. In the future, we aim to incorporate these into
our system for a better privacy experience.

Acknowledgement
Research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defense and was accomplished under Agreement
Number W911NF-06-3-0001. This material is also based upon work
supported by the NSF under awards CNS-0910706 and CNS-1213140.
Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily re-
flect the views of the NSF or represent the official policies of the U.S.
Army Research Laboratory, the U.S. Government, the U.K. Ministry
of Defense or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon. The first
and second authors are supported by the Qualcomm Innovation Fel-
lowship award for 2011-2012. We would also like to thank our shep-
herd James Scott for his valuable suggestions and guidance.

6. REFERENCES
[1] http://http://developer.android.com/guide/

basics/what-is-android.html.

[2] github.com/gsbabil/PDroid-AOSP-JellyBean.

[3] http://funf.org.

[4] S. Chakraborty, K. R. Raghavan, and M. Srivastava.
Poster: Model-based context privacy for personal data
streams. CCS, 2012.

[5] D. Chu, A. Kansal, J. Liu, and F. Zhao. Mobile apps:
it’s time to move up to condos. HotOS, 2011.

[6] C. Dwork. Differential privacy: a survey of results.
TAMC, 2008.

[7] W. Enck and et. al. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones. OSDI, 2010.

[8] C. Gentry and S. Halevi. Implementing gentry’s
fully-homomorphic encryption scheme. EUROCRYPT,
2011.

[9] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: automatically detecting potential
privacy leaks in android applications on a large scale.
TRUST, 2012.

[10] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof-systems.
STOC, 1985.

[11] P. Golle and K. Partridge. On the anonymity of
home/work location pairs. Pervasive, 2009.

[12] M. Götz, S. Nath, and J. Gehrke. Maskit: privately
releasing user context streams for personalized mobile
applications. SIGMOD, 2012.

[13] K. Kenthapadi, A. Korolova, I. Mironov, and
N. Mishra. Privacy via the johnson-lindenstrauss
transform. CoRR, abs/1204.2606, 2012.

[14] E. Kim, S. Helal, and D. Cook. Human activity
recognition and pattern discovery. IEEE Pervasive
Computing, 2010.

[15] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong,
and J. Zhang. Expectation and purpose:
understanding users’ mental models of mobile app
privacy through crowdsourcing. UbiComp, 2012.

[16] K. Liu, H. Kargupta, and J. Ryan. Random
projection-based multiplicative data perturbation for
privacy preserving distributed data mining. IEEE
Trans. on Knowl. & Data Eng., 2006.

[17] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Trans. Knowl. Discov. Data, 2007.

[18] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, 2008.

[19] A. Narayanan and V. Shmatikov. Myths and fallacies
of ”personally identifiable information”. Commun.
ACM, 2010.

[20] H.-S. Park and S.-B. Cho. Predicting user activities in
the sequence of mobile context for ambient intelligence
environment using dynamic bayesian network. In
ICAART, 2010.

[21] K. R. Raghavan, S. Chakraborty, and M. Srivastava.
Override: A mobile privacy framework for
context-driven perturbation and synthesis of sensor
data streams. PhoneSense, 2012.

[22] L. Sankar, S. Rajagopalan, and V. Poor. A theory of
utility and privacy of data sources. ISIT, 2010.

[23] M. Srivatsa and M. Hicks. Deanonymizing mobility
traces: Using social network as a side-channel. CCS,
2012.

[24] L. Sweeney. k-anonymity: a model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 2002.

[25] T. Vila, R. Greenstadt, and D. Molnar. Why we can’t
be bothered to read privacy policies models of privacy
economics as a lemons market. ICEC, 2003.

[26] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu.
Fast app launching for mobile devices using predictive
user context. MobiSys, 2012.

[27] A. C.-C. Yao. How to generate and exchange secrets.
SFCS, 1986.

