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ABSTRACT
Ride-sharing on the daily home-work-home commute can
help individuals save on gasoline and other car-related costs,
while at the same time reducing traffic and pollution in the
city. Work in this area has typically focused on technology,
usability, security, and legal issues. However, the success of
any ride-sharing technology relies on the implicit assump-
tion that human mobility patterns and city layouts exhibit
enough route overlap to allow for ride-sharing on the first
place. In this paper we validate this assumption using mobil-
ity data extracted from city-wide Call Description Records
(CDRs) from the city of Madrid. We derive an upper bound
on the effectiveness of ride-sharing by making the simpli-
fying assumption that any commuter can share a ride with
any other as long as their routes overlap. We show that sim-
ple ride-sharing among people having neighboring home and
work locations can reduce the number of cars in the city at
the expense of a relatively short detour to pick up/drop off
passengers; e.g., for a 0.6 km detour, there is a 52% reduc-
tion in the number of cars. Smartphone technology enables
additional passengers to be picked up along the way, which
can further reduce the number of cars, as much as 67%.

1. INTRODUCTION
Ride-sharing is an effective way to reduce the number of

cars on the streets in order to address both individual and
city-wide issues. On one hand, individuals are interested in
reducing the cost of their car usage and save on gasoline
and other usage-based costs [2]. On the other hand, cities
are interested in reducing traffic and pollution and provide
incentives (e.g. reserved carpooling lanes) to encourage com-
muters to share rides. In recent years, a plethora of web-
or smartphone-based solutions have emerged in order to fa-
cilitate intelligent traffic management [18], [17], [5], and in
particular ride-sharing. Systems like carpooling.com, and
eRideShare.com have attracted a few million users in Eu-
rope and the US but the technology hasn’t been widely
adopted yet.
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Ride-sharing systems started in the US during WW-II.
These early “word-of-mouth” systems required predefined
rendezvous and prior familiarity among commuters, which
limited the number of neighbors a person could share a
ride with. More recently, web-based solutions, such as
Amovens.com, allow drivers and passengers to advertise
their interest in ride-sharing, thereby increasing the chances
of finding a match, but still generally require predefined ren-
dezvous. Using smartphones with ride-sharing apps, such
as Avego.com, allows drivers and passengers to be matched
opportunistically without pre-arranged rendezvous. Such
systems are promising but it is still unclear whether they
will be widely adopted.

Work in the area has focused on technological, usability,
security and legal aspects [16] [20]. Previous research has
shown that ride-sharing has economic advantage over driv-
ing alone, and that is more spatially flexible and less time
consuming than public transportation, but it is not sure if
this advantages are strong enough to entice commuters to
switch to ride-sharing; privacy and flexibility are major rea-
sons why the vast majority of commuters choose to drive
alone. Many believe that current technology provides in-
sufficient levels of security and monitoring to allow people
to travel safely with strangers; others believe that it is only
an unsolved bootstrapping problem that keeps the technol-
ogy from booming. Most people, however, implicitly assume
that human mobility patterns and the layouts of today’s
cities exhibit enough route overlap for ride-sharing to take
off, once the aforementioned issues are solved.

In this paper, we validate this underlying assumption,
which is crucial for the success of any ride-sharing system.
To this end, we use home/work locations, for a large popu-
lation of a city, extracted from a CDR dataset; the inferred
home and work locations are used to match people in groups
that share the same car. The exact potential of ride-sharing
depends on many factors, not all of which can be known at
the scale of our study (e.g., behavioral traits). Our approach
is to focus only on quantifiable factors and mask all other
unknown factors by making the simplifying assumption that
ride-sharing is constrained only by the distance of end-points
and time. Therefore, our quantification is actually an upper
bound of the exact potential of ride- sharing that may be
constrained by additional factors.

Our contributions are as follows. We consider two sce-
narios for ride sharing, and for each scenario we develop an
efficient algorithm to do the matching, and quantify the ben-
efit of ride-sharing in terms of reduction in the number of
cars. Note that, the theoretical limit of car reduction is 75%



(all users are matched in cars of 4 and only 25% of the cars
are used). The scenarios and results are summarized below.
EndPoints RS: In this scenario, we consider ride-sharing

only among users with nearby (i.e., within distance δ) home
and work locations. We formulate the problem of matching
users so as to minimize the number of cars, and serve all
rides among neighbors that are within distance δ in both
home and work location, as a Capacitated Facility Loca-
tion Problem with Unsplittable Demand. Since the latter
is an NP-hard problem, we develop an efficient heuristic al-
gorithm that we name EndPoints RS. When applied to our
CDR dataset, the algorithm provides an upper bound to
the ride-sharing potential benefits: 52% car reduction for δ
to 0.6 km, if we assume that drivers wait for passengers as
long as necessary. Although unrealistic, this puts an upper
bound on the savings of ride-sharing based only on spatial
information about home and work. When we introduce time
constraints into the picture, we find that the effectiveness of
ride-sharing becomes proportional to the driver/passenger
waiting time for a pick-up, and inversely proportional to the
standard deviation of departure times. For example, with
a standard deviation of 10 minutes, a wait time up to 10
minutes, and a δ of 0.4 km there is a 26% reduction of cars.
EnRoute RS: Next, we compute the routes from home to

work using Google Maps and allow en-route pick-ups. First,
we match neighbors using the EndPoints RS algorithm.
Then additional passengers are picked up along the way,
which clearly increases the effectiveness of ride sharing,
using an iterative algorithm, which we refer to EnRoute
RS. The same δ and τ applied to end points are applied
to en-route pick-ups too. For example, with a δ of 0.6 km
the effectiveness on savings jumps from 52% for EndPoints
RS to 67% for EnRoute RS. Taking also into account the
randomness in departure times, the corresponding numbers
are 35% for EndPoints RS and 56% for EnRoute RS.

The rest of this paper is organized as follows. In Section II
we briefly describe the CDR dataset that is the basis of this
study. In Section III, we present our methodology for infer-
ring the Home Work location for individual users. In Section
IV and Section V we consider matching based on end points
(EndPoints RS) and en route (EnRoute RS) respectively. In
particular, we present efficient matching algorithms and we
evaluate the benefits of ride-sharing when applying these al-
gorithms on the CDR dataset. Section VI discusses related
work. Section VII concludes the paper.

2. OUR CDR DATASET
A valuable asset of this study is the Call Description

Records or CDR Dataset, which we obtained from a large
cellphone provider. It contains 820M calls from 4.7M mobile
users, during a 3-month period, in the metropolitan area of
Madrid, Spain.

CDRs are generated when a mobile phone makes or re-
ceives a phone call or uses a service (e.g., SMS, MMS, etc.).
Information regarding the time/date and the location of the
nearest cell tower are then recorded. More specifically, the
main fields of each CDR entries are the following: (1) the
originating number (2) the destination number (3) the time
and date of the call (4) the duration of the call (5) the lat-
itude and longitude of the cell tower used by one, or both,
phones numbers — cell phone companies save CDR records
only for their customers. These records are logged for pric-
ing purposes, so they come at no extra cost to the cellular

(a) Headquarters of Tele-
fonica in Madrid

(b) Residential Area:
Latitude:40o30′13.45′′,
Longitude:3o38′07.69′′

Figure 1: Example of strictly residential and strictly
working areas

Figure 2: Characterizing Madrid based on our re-
sults

operator. Note that no information about the exact position
of a user is known, since cell phone data provide coarse loca-
tion accuracy — a few hundred meters for city center, and
up to 3 km in rural areas. For privacy reasons, no contract or
demographic data were made available to us, and the orig-
inating and destination phone numbers were anonymized.
More details about CDRs can be found in [15].

3. INFERRING HOME AND WORK
We use an existing methodology to infer the Home/Work

locations of 270K individuals in our CDR dataset. This
subset of individuals is then used as input to the match-
ing algorithms, discussed in the following section, and the
benefit of ride-sharing (reduction in the number of cars) is
computed.

3.1 Methodology
We apply the methodology of Isaacman et al. [10], which

identifies important places (i.e., places that the user visits
frequently and spends a lot of time) in the life of mobile
phone subscribers, based on (i) CDR data and (ii) ground
truth for a subset of subscribers. More specifically, in [10],
the recorded cell towers of a user are clustered to produce
the list of places that she visits. Then, regression analysis
is applied on the ground truth users (their identified clus-
ters and their true important locations) to determine the
features that distinguish clusters that represent important
places. Such features include: (1) the number of days that
the user appeared on the cluster (2) the duration of user ap-
pearances on the cluster (3) the rank of the cluster based on
number of days appeared. Once important locations have



(a) A ground truth user

(b) Zooming at
home

(c) Zooming at work

Figure 3: The red marks show the recorded cell tow-
ers for the user, while the blue marks the clusters.
The white numbers next to each mark indicate the
number of weekdays and the number of weekends
the user appeared in that location. Also, the size of
each mark is proportional to the number of days the
user has appeared in that location.

been identified, the authors choose which of these locations
is home and which is work. The best features to make this
decision are: (4) number of phone calls between 7PM - 7AM
(5) number of phone calls between 1PM - 5PM, referred to
as Home Hour Events and Work Hour Events respectively.

In this paper, first, we filter out users for whom we sim-
ply do not have enough data: i.e. users with less than 1
call per day on average, or less than 2 clusters with 3 days
of appearance and 2 weeks of duration. Then, we tune the
methodology of [10] in our case. More specifically, we build
two classifiers, one for home and one for work, and we train
them using the 5 features described above and the ground
truth described in 3.2. Once the training is complete, we
apply the classifiers to the rest of the users. This was nec-
essary since our ground truth contains only home and work
location, while the ground truth of [10] contained other im-
portant locations too. Finally, after classification, we keep
only the users who have only one location identified as home,
and a different location identified as work, since we are in-
terested only in commuters.

3.2 Obtaining the Ground Truth
In [10], a small set of 37 volunteers who reported their

most important locations, including home and work. This
information was used to train the classifiers that were ap-
plied to the remaining dataset of around 170K mobile phone
users.

In our case, we did not have access to the actual phone
numbers. We obtained our ground truth for a select subset
of users based on our knowledge of the city of Madrid. In
particular, due to its development pattern in the last 20
years, Madrid has many areas lying around its outer ring
highways that are strictly residential and other ones that
are strictly industrial. An example of the former are large
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Figure 4: Assuming users u leaves home at 9:10, the
users departing with 10 min difference are in the
green area under the curve.

residential development projects in previously isolated areas
like the one depicted in Fig. 1. Such areas offer a clear
distinction between home and work and can be exploited to
build our “ground truth”. To this end, we selected 160 users
that appeared for many days in only one such residential
area during 7PM - 7AM (assumed to be “home” hours), and
only one such industrial area during 1PM - 5PM (assumed
to be“work”hours). Then, the location inside the residential
area is pointed as the user’s Home, while the location inside
the industrial area is pointed as the user’s work.

For each one of the 160 users, we visually inspected their
recorded locations through Google Earth for a sanity check.
In Fig. 3 we show one of these users: this person lives in
the location shown in Fig. 3(b), which is the top right blue
marker of Fig. 3(a), and work on the location shown in Fig.
3(c), which is the bottom left marker of Fig. 3(a).

3.3 Results
Applying the above methodology to our CDR dataset,

we are able to infer the home and work locations of 270K
individual users.

The following comparison provides a sanity check. In
Fig. 2 we break the city of Madrid into a grid and paint each
square of the grid with a combination of green and red. If the
number of inferred home locations is higher than the num-
ber of work locations, then the color of the square is closer
to green, otherwise it is closer to red. We use an existing
study [15] to obtain a characterization of locations in Madrid
(industrial, commercial, nightlife, leisure and transport, res-
idential). We annotate such areas in Fig.2 using numbered
circles, e.g., the headquarters of Telefonica in Madrid is one
of the two red circles on the top of the figure. We observe
that the squares that we painted red contain more circles
indicating industrial and commercial zones, than residential
zones. Also, squares painted green contain more residential
zones than industrial zones.

However, due to privacy reason, validating home/work re-
mains challenging. We are currently in the process of ob-
taining permission to compare our results with the billing
database of the operator and compute our detection success
ratio at the level of postal code.

4. RIDE WITH THY NEIGHBOR
Here we formulate the problem of EndPoints RS i.e., ride-

sharing among people that live and work nearby. We develop
a practical algorithm, apply it to the 270K users with esti-
mated home/work locations, and compute the number of
cars that can be reduced under different scenarios.

4.1 Formulation
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Let V denote a set of potential drivers and c(v) the ca-
pacity, in terms of available seats, of the car of driver v ∈ V
and p(v) a penalty paid if driver v is selected for driving
his car and picking up passengers. Let h(v, u) denote the
geographic distance between the home locations of drivers v
and u and w(v, u) the corresponding distance between their
work locations. Let δ denote the maximum distance between
a driver’s home/work and the home/work of passengers that
he can pick up in his car, i.e., v can have u as passenger only
if: max(h(u, v), w(u, v)) ≤ δ

Let d(v, u) denote a virtual distance between v and u de-
fined as follows:

d(v, u) =


h(v, u) + w(v, u),
if max(h(v, u), w(v, u)) ≤ δ

∞, otherwise

Our objective is to select a subset of drivers S ⊆ V , and
find an assignment a : V → S, that minimizes P (S)+D(S),
the sum of penalty and distance costs, while satisfying the
capacity constraints of cars. The two costs are defined as
follows:

P (S) =
∑
v∈S

p(v) and D(S) =
∑
v∈V

d(a(v), v)

where a(v) ∈ S is the driver in S that is assigned to pick up
passenger v (can be himself if v is selected as a driver). By
setting p(v) > 2δ · c(v) we can guarantee that an optimal
solution will never increase the number of cars used in order
to decrease the (pickup) distance cost between a driver and

its passengers. The above problem is an NP-hard Capaci-
tated Facility Location Problem with Unsplittable Demand in
metric distance: the set of potential drivers corresponds to
the set of locations; the set of chosen drivers corresponds to
opened facilities; car capacity corresponds to facility capac-
ity; distance d(v, u) corresponds to the cost of assigning a lo-
cation v to the facility u. Efficient approximation algorithms
are known for this type of facility location problem [14].

The above formulation finds the minimum number of cars
needed when there are no timing constraints around depar-
ture and return times from home and work. Next we refine
the formulation to include time. We assume that departures
from home and work follow Gaussian distributions, centered
at 9 am and 5 pm respectively, with standard deviation σ.
Also, we introduce the wait tolerance τ that captures the
maximum amount of time that an individual can deviate
from his normal schedule in order to share a ride, Fig. 4.
More specifically, if LH(u) expresses the time a person u
leaves home to go to work, and LW (u) expresses the time
she leaves work in order to return to home. Then, two people
u and v, can share a ride only if:

max(|LH(u)− LH(v)|, |LW (u)− LW (v)|) ≤ τ

The introduction of the temporal constrains will only change
the virtual distance between v and u :

d(v, u) =



h(v, u) + w(v, u),
if max(h(v, u), w(v, u)) ≤ δ
AND |LH(u)− LH(v)| ≤ τ
AND |LW (u)− LW (v)| ≤ τ

∞, otherwise

4.2 A practical algorithm
In this section we show how to modify the existing ap-

proximation algorithm [14] for the facility location problem
described above and obtain a faster heuristic that can cope
with the size of our data set.

The existing algorithm starts with an initial random so-
lution and improves it iteratively via local search. At each
iteration there are O(n2) candidate solutions, where n cor-
responds to the number of potential drivers, and for each
one of them we find the assignment (passengers to drivers)
that will minimize the cost; this can be done in polyno-
mial time by solving an appropriately defined instance of
the transportation problem. The algorithm terminates when
local search cannot find a better solution.

We modify the algorithm in three ways. First, since the
quality of the solution depends mostly on the number of
drivers, we try to keep that number as low as possible.
Therefore, we use the b-matching [3] algorithm to generate
the initial solution, instead of generating it randomly. The
input to the b-matching algorithm consists of the set of po-
tential drivers V , a function p(v) that defines the set options
for a potential driver v i.e. p(v) = {u|d(u, v) < inf}, and
a global ordering of the potential drivers, O. The global or-
dering will be based on the number of options; the fewer the
options, the higher the position in O. By using b-matching
with a global order we are guaranteed to find a solution in
O(n) time [3]. For each match generated by b-matching, we
assign the potential driver with the most occupied seats to
drive; we make sure that every user in V appears in only
one car. This solution proves much better than the random



one by paying O(nlog(n)) for sorting the users to generate
the global preference list and O(n) for the matching.

Second, solving a transportation problem with 270K users
is hard. Therefore, we need to modify the local search steps
of the approximate algorithm. Given an initial solution we
leave the users commuting in cars of four as they are and
search for better assignments only for the rest. This way the
size of the transportation problem will be reduced and that
would speed up the process of generating the assignment.

Third, reducing the size of the transportation problem is
not enough; we also need to reduce the neighborhood of
candidate solutions. Given an initial set of drivers, S, we
create a fixed size neighborhood, where each solution S′ is
created by doing random changes in S. The reason why we
do that is because considering all potential solutions that
differ from S only by one, means that we have to examine
O(n2) candidate solutions; that makes each iteration very
expensive. Therefore, the fixed size solution helps us speed
up the time we spend in each improvement step.

Without the above modifications it would be impossible
to solve the problem in real time. Solving an instance of
the transportation problem for 270K users required a couple
of hours for δ = 0.6 km, and even more when δ = 0.8 or
δ = 1.0 km. Therefore, solving O(n2) such problems for a
single iteration becomes too expensive. Moreover, most of
the time the solution of the b-matching algorithm was so
good that the gain from the improvement steps would be
insignificant.

4.3 Results
A this point we are ready to calculate the effectiveness of

EndPoints RS in the Madrid metropolitan area. We reduce
the size of our dataset by randomly selecting only 60% of
the users.We do that to capture the fact that only 60% of
the population has a car in the area of Madrid [1]. We also
show results for the case that half of the car owners use their
car at their daily commute (the results are quantitatively
close). For the remaining of the section, we will refer to users
who can share rides with a specific user v, as options of v.
Subsequently we compute the percentage-wise reduction of
cars

success =
#(init. cars)−#(ride-sharing cars)

#(init. cars)
· 100

using the following algorithms:
Absolute upper bound: Given our definition of success, we

cannot do better than 75%. This is the case when all cars
carry 4 people.

Tighter upper bound: All users with at least one ride-
sharing option, are assumed to commute in cars of 4.

Time-indifferent matching (τ =∞): This is the practical
algorithm described in Sect. 4.2

Time-aware matching: This is the version of the algorithm
that considers timing constraints under the assumption of
normally distributed departure times.

In Fig. 5 we see what happens when the drivers are willing
to tolerate a detour of δ and deviate τ minutes from their
departure times, in order to share the same car with another
individual. The results show that with even modest delay
tolerance of 10 minutes and detour distance of 0.6 Km (a
couple of city blocks) 40% of the cars can be saved. This
is more than half of the absolutely optimal performance.
Increasing either of the two parameters improves the success
ratio. The diminishing improvement with increasing δ can
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Figure 7: Benefits from EnRoute RS.

be explained by the number of options users have given the
distance δ. In Fig. 6 the red color represents the users with
no options, the blue color the users with 1 or 2 options, and
the green color the users with 3 or more options. We can
see that the success of ride-sharing is proportional to the
number of users who have 3 or more options; since, as we
can see from Fig . 5 and Fig . 6, they increase in a similar
way.

5. EN-ROUTE RIDE-SHARING
The effectiveness of ride-sharing can be greatly enhanced

by picking up additional passengers en-route. For example
a driver that lives in a sparsely populated area might not
have any neighbors to fill his seats but once he enters the
city he might be able to pick several passengers that have
routes “covered” by his own. To quantify the benefits of
en-route ride-sharing we obtain routes from Google Maps
for our dataset of 270K users and extend the algorithm of
Section 4.2.

5.1 En-route algorithm
We use an iterative algorithm with the following steps in

each iteration.

1. Run the basic EndPoints RS algorithm.

2. Exclude from the solution cars that get fully packed (a
car of 4). Then order cars in decreasing order of pas-
sengers and start “routing” them across Madrid using
data from Google maps.

3. When the currently routed car v meets a yet un-routed
car v′, then v is allowed to steal passengers from v′ as
long as it has more passengers than v′ (a rich-get-richer
strategy). Whenever a routed car gets fully packed it
is removed from further consideration. Whenever a car
with a single passenger is encountered the number of
cars is reduced by one.

This is repeated until there is no possible improvement.
It can be shown (omitted for lack of space) that the rich-
get-richer rule leads to convergence.

5.2 Results
Fig. 7 shows the performance of EnRoute RS. To make

the comparison with EndPoints RS easier we summarize
results from both in Table 1: one can verify the significant
improvement obtained through EnRoute RS, which is several
cases comes within 10% of the optimal performance.



6. RELATED WORK
Mining mobility patterns from wireless traces has recently

received a lot of attention. Of particular interest to this work
is the mining of mobility patterns from CDRs. The best
examples of this area are the work of Gonzalez et al. [8], who
use CDRs in order to characterize the distribution of human
trajectories, and the work of Isaacman et. al. [10] [11] [12]
[13] who use CDRs to characterize various aspects of human
mobility, such as important places, ranges of travel, etc. The
previous examples use only the location information, but
recent work [4] [6] also exploits the social graph inside the
CDRs also (who calls who). Finally, another example of
human mobility form CDR data is [7].

To the best of our knowledge this is the first work on ride-
sharing applications based on CDRs. Other ride-sharing
applications, that exploit wireless traces, use mostly GPS
[9] [19]. The work presented in [9] presents a frequency-
based route mining algorithm designed for GPS data and is
used to extract frequent routes and recommend ride-sharing
plans using the GPS traces of 178 individuals. Trasarti et
al. [19] use GPS data to build the mobility profiles of 2107
individuals and match them based on the similarities of their
mobility profiles; they also apply their algorithms to a GSM-
like data set, which they synthesize by reducing the size of
their GPS data set.

Past work on Carpooling has be focused mainly in char-
acterizing the behavior of carpoolers, identifying the indi-
viduals who are more likely to carpool and explaining what
are the main factors that affect their decision on whether to
use carpooling or not [16]. Also, the question whether ride-
sharing can reduce congestion has been asked before [20].
But, the authors of [20] assumed uniform distribution of
home and work locations and concluded that ride-sharing
has little potential for congestion reduction. On the con-
trary, we make no assumption about the distribution of
home and work locations in a city, but infer such information
from a Call Description Dataset, and show that ride-sharing
has a lot of potential for reducing the number of cars from
the streets of a city.

7. CONCLUSION
In this paper, we used CDR data to derive an upper bound

for the potential of ride-sharing. The results indicate that
there exists huge potential in densely populated urban areas,
such as the city of Madrid in Spain. This motivates working
on the technological challenges involved in facilitating car
sharing. In future work, we plan to (i) extend our study in
other cities, (ii) take additional aspects into account, such
as the structure of the call graph, (iii) obtain additional in-
formation for ground truth and (iv) deploy an actual system
that mines CDR and facilitates car sharing.
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