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Message from the Chairs 

ACM HotMobile 2013 marks the fourteenth Workshop on Mobile Computing Systems and 

Applications. This year, it will be held in Jekyll Island, Georgia – moving to the opposite US coast 

from our 2012 workshop in La Jolla, CA. ACM HotMobile is a strong, peer-reviewed forum providing 

insight and debate into ground-breaking areas in mobile computing. 

The workshop submission count was slightly lower compared to last year – 54 submissions this year 

and 68 last year. The program committee accepted 17, resulting in a higher acceptance rate of 31%. 

We accepted a number of poster and demonstration submissions. We will have several supporting 

events throughout the workshop to complement our rich technical program of six paper sessions. 

Our opening keynote is titled “Wearable Computing: Through the Looking Glass” from Thad Starner, 

a pioneer in the field of wearable computing from GeorgiaTech. We have a panel on “Mobile 

Systems and the Developing World”, chaired by Gaetano Borriello of University of Washington. 

In keeping with our deliberately small workshop theme, we will have a number of opportunities for 

attendees to engage with each other. At the end of every paper session, the session chair will bring 

up all the presenters and facilitate a deeper discussion on the topic covered by that session. We will 

have a poster and demonstration session, allowing PhD students to present and discuss their 

research with the goal of obtaining early critical feedback from an audience that has a wide 

perspective on the challenges of mobile computing. We will also have socializing opportunities, 

including a banquet, an ice cream social, and several breaks. 

New this year, we are running a student travel grant program. We received 33 applicants for travel 

support, which is an astonishingly high number considering that attendance at HotMobile is around 

80. We used a number of criteria to pick the 11 awardees, including academic merit, diversity, ability 

of the advisor or department to fund travel, relevance of student’s work to the workshop, likelihood 

of student’s impact on SIGMOBILE, and prior volunteer efforts in SIGMOBILE. These students will 

also have visible volunteer roles at the workshop, including writing a workshop report for ACM 

MC2R, and helping with the registration desk. Many thanks go to the ACM SIGMOBILE chair, Roy 

Want, for supporting this experiment and we hope it is a resounding success. Through a combination 

of generous support from industry and careful venue selection and contract negotiation, we were 

able to bring early registration fees down to a historical low of $175 for students and $290 for ACM 

professional members. 

As always, these events are only successful because of the valuable personal time that volunteers 

are prepared to give to our research community. We thank the 21 members of our program 

committee for their dedication in reviewing submissions, and the steering committee for their 

guidance. We thank all the chairs providing logistical support with publicity, student grants and 

volunteering, posters and demos, and website updates. Most of all, we thank all the authors that 

submitted their work to make this a valuable forum for sharing and debating early research results. 
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Splitting the Bill for Mobile Data with SIMlets

Himanshu Raj, Stefan Saroiu, Alec Wolman, Jitendra Padhye
Microsoft Research

Abstract: The scarcity of mobile broadband spectrum is a prob-
lem hurting all stakeholders in the mobile landscape – mobile op-
erators (MOs), content providers, and mobile users. Building ad-
ditional capacity is expensive, and MOs are reluctant to make such
investments without a clear way of recouping their costs. This pa-
per presents the idea of split billing: allowing content providers to
pay for the traffic generated by mobile users visiting their websites
or using their services. This creates an additional revenue stream
for MOs and builds more pressure for updating their networks’ ca-
pacities. End users also benefit because they can afford more ex-
pensive data plans and enjoy new applications and scenarios that
make use of faster mobile networks.

To implement split billing securely on a mobile platform, we
develop the SIMlet, a new trustworthy computing abstraction. A
SIMlet can be bound to a network socket to monitor and account
all the traffic exchanged over the network socket. SIMlets provide
trustworthy proofs of a device’s mobile traffic, and such proofs can
be redeemed at a content provider involved in split billing.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

General Terms
Design

Keywords
Mobile Computing, Traffic Metering, Traffic Billing, Broadband
Wireless, 3G, 4G, ARM TrustZone, Split Billing, SIMlet

1. INTRODUCTION
The scarcity of spectrum for mobile broadband networks is

hurting all stakeholders in the mobile landscape – users, content
providers, and the mobile operators (MOs). As users migrate more
of their computing tasks to smartphones and tablets using 3G/4G
networks, users will increasingly feel constrained by the low ca-
pacity of today’s mobile broadband networks. Content providers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’13, February 26–27, 2013, Jekyll Island, Georgia, USA.
Copyright 2013 ACM 978-1-4503-1421-3/13/02 ...$15.00.

have little choice but to create “mobile-only” versions of their con-
tent to accommodate the lack of bandwidth reaching smartphones
and tablets on the go. Finally, MOs are reluctant to make costly
investments in upgrading their infrastructure. While MOs have ac-
cess to a variety of approaches to improve their networks’ capacity,
all such approaches come with significant costs. Indeed, whether
MOs purchase more spectrum, increase spatial reuse by deploying
a higher density of cell towers, or deploy femtocells, MOs need
strong incentives to invest billions of dollars in their infrastructure.

The current situation resembles a “chicken and egg” problem.
MOs have little incentive to make expensive investments into their
infrastructure as long as it is not clear how their costs will be re-
couped. Users are stuck with moderately expensive data plans, and
are unwilling to pay more in the absence of compelling content and
applications that need faster mobile broadband networks. Finally,
content providers and application developers cannot “force” MOs
to update their networks; instead, they alter their applications and
services to fit current bandwidth rates and “spotty” reception.

There are only a few examples of content providers who have
managed to overcome this situation. One example is Amazon’s
Kindle devices, which are sold with no need for customers to pur-
chase data plans. Instead, Amazon bought data in bulk directly
from AT&T. Amazon will recoup the cost of the 3G data as long
as customers buy books from Amazon, and watch ads on their Kin-
dles1, all activities that consume relatively little bandwidth. Other
examples are 0.facebook.com [4], where Facebook offers free ac-
cess to their site for all users of certain MOs, and Globe Telecom’s
Free Zone, a partnership between an MO in the Phillipines and
Google [5]. Unfortunately, all such solutions face two challenges.
First, they are heavy-handed because content providers and appli-
cation developers must now sign deals with MOs; although Ama-
zon can negotiate a deal with AT&T, it is much more difficult for
the average app developer to create such a deal. The second chal-
lenge is that it is also expensive for MOs to negotiate individual
deals with a large number of content providers. Such an approach
to overcoming the “chicken and egg” problem does not scale.

This paper explores a different approach to overcoming this
problem: split billing, a mechanism that allows content providers
to subsidize or share the cost of 3G data consumed by their content
and services. Split billing lowers the barriers between MOs, con-
tent providers, and users because it lets content providers to offer to
pay for bandwidth on behalf of customers. This creates additional
revenue streams for MOs, incentivizing them to upgrade their net-
works’ capacities. End users also benefit because new scenarios are
now possible, such as:

1Amazon offers cheaper versions of their devices that require users
to watch ads. Ad-free Kindles are also available, but are more ex-
pensive.



• Bandwidth-intensive websites such as Netflix or Hulu can
enable mobile users to visit them and not worry about ex-
ceeding their bandwidth caps.

• Users can have a single phone for both work and personal
use, and bill the network costs for their enterprise VPN traf-
fic and other work-related applications directly to their em-
ployer.

• Advertisers can offer much richer ads (e.g., short video clips)
to mobile users without having to worry about affecting their
data plan quotas.

• Mobile phone users can run applications, such as peer-to-
peer applications, where the traffic generated by the applica-
tion is done on behalf of another user or device.

• Parents can encourage teenagers to run continuous monitor-
ing applications to let them know where they are.

All these usage scenarios share a common restriction – a certain
type of traffic meant for a certain destination or for use at a partic-
ular time should not be counted against the default quota.

Implementing split billing requires content providers and app de-
velopers to track the amount of 3G traffic their users consume. The
system must have a high degree of security otherwise users might
cheat in an attempt to qualify for savings on their 3G bill, by falsely
claiming to have used 3G to access a site when in fact they used Wi-
Fi. One possible implementation is to track users on the server-side
and classify the type of network they are using (as 3G or Wi-Fi)
based on the client’s IP address. It is challenging to accurately in-
fer which IP addresses are 3G versus Wi-Fi unless MOs cooperate
with content providers and app developers. Section 4 describes the
challenges of server-side split billing in more depth.

Instead, we chose an implementation that does not require co-
operation from MOs: tracking 3G usage on the client-side. A
client-side solution is more readily deployable because it does not
require engagement with MOs. After a client-side approach has
demonstrated the benefits of split billing, MOs will become more
willing to take the necessary steps to offer split billing support to
the masses of content providers and app developers. For example,
MOs could offer a secure cloud-side service that tells app develop-
ers whether a given IP address is connected through their mobile
broadband network. The app developer would use such a service
to offer split billing inside their apps. Such a service must offer a
high-degree of trustworthiness, otherwise mobile users could mis-
represent their Wi-Fi traffic as mobile broadband traffic to the ap-
plication’s split billing component.

To implement client-side split billing, we develop an abstraction
called a SIMlet. SIMlets are simple packet filters that associate
individual traffic with a particular billing account. SIMlets must
remain secure in the face of OS vulnerabilities, and thus they run in
a strongly isolated runtime that leverages trusted computing hard-
ware for mobile devices. Some of today’s mobile phones already
support dual SIM cards. SIMlets can be thought of as equivalent to
being able to insert multiple SIM cards into a phone, along with a
set of rules that indicate which particular SIM card a network flow
should use.

Using SIMlets, we started the design and implementation of a
fine-grained networking billing system for mobile devices where
client applications or individual websites can create billing ac-
counts and specify classes of traffic to be associated to a particular
billing account. For each account, the system can provide trustwor-
thy proofs of how much data applications have consumed. Users

could redeem such proofs to MOs or content providers in exchange
for rewards, rebates, credits, or even cash.

For our implementation, we use the Berkeley Packet Filter (BPF)
to support the SIMlet abstraction, and we use the ARM TrustZone
feature built into modern ARM System-on-Chip’s (SoCs) to pro-
vide a trusted execution environment for SIMlets. Using TrustZone
enables our system to perform trustworthy metering of which traf-
fic is assigned to which billing account even if malware infects the
OS running on the smartphone or tablet.

2. COST ANALYSIS
3G/4G spectrum crunch stems from the limited spectrum and

long-range nature of the wireless technology. A single cell tower
today handles 100’s or even 1000’s of individual subscribers at dis-
tances of up to tens of miles [13]. This is in sharp contrast to Wi-Fi
where a one AP rarely handles more than tens of subscribers. With
the unprecedented growth of smartphone and tablet usage, there
simply is not enough network capacity to address the emerging de-
mand. While we have seen a steady increase in the data rates sup-
ported by mobile broadband networks, the effective throughput for
applications is substantially lower than the advertised rates [9], and
we are already witnessing the effects of network congestion, with
many users complaining of slow networks.

To address these capacity issues, network providers are consid-
ering a few options: 1) purchasing additional wireless spectrum,
2) increasing spatial reuse by deploying additional celltowers, and
3) increasing spatial reuse by deploying femtocells. While each
of these options has the potential to improve the current capac-
ity crunch, there is a common factor hindering all these options.
They are each very expensive, and they come with significant de-
ployment challenges. For example, increasing celltower density
requires leasing or buying more physical locations, obtaining per-
mits, and connecting all these sites, which increases fixed network
costs and complicates operations.

For split billing to be viable, the customer base must be attractive
to content providers and app developers. Content providers and app
developers must be able to recoup the split billing costs and even
sell more services to customers. For example, a movie download
provider could offer free movie previews to entice its customers
to purchase more movies. A mobile game developer might offer
free 3G for its games as long as customers keep making in-app
purchases. Split billing is attractive as long as content providers
and app developers can target customers with the means to pay for
additional content and services.

The remainder of this section describes a cost analysis of the
feasibility of split billing. We combine three datasets to show that
today’s data plans come with strict quotas that provide little data
to their users. The second high-level finding is that some well-
developed countries offer worse data plans (by both cost and quan-
tity of data) than some less-developed countries. This suggests that
split billing could be effective in attracting customers more likely
to spend on additional content and services.

2.1 Data Sources
The data plans used in our analysis come from a dataset of prices

of mobile broadband released by Google2. Table 1 shows a few
high-level statistics of this dataset. We also breakdown some of
our analysis by countries and their GDP; the GDP data comes from

2http://policybythenumbers.blogspot.gr/2012/
08/international-broadband-pricing-study.
html



Mobile Broadband Pricing (Google dataset)

Number of Plans Examined 2154

Number of Countries 106

Types of Mobile Broadband
2G, 2.5G, 3G, 4G, CDMA, EDGE, EVDO, 

HDSPA, HSDPA, HSPA, LTE

Number of Unlimited Plans 142 (4.9%)

Table 1: High-level statistics of the mobile broadband pricing
data released by Google.

the World Bank3. Finally, we use estimates of the today’s 3G/4G
bandwidths collected by a very recent paper [16].

2.2 Today’s Data Plans Offer Little Data
The pricing dataset revealed by Google shows that most data

plans have very strict quotas. On the left, Figure 1 illustrates the
distribution of monthly quotas. Almost 85% of all plans offer less
than 10GB of data a month, and 36% offer less than 1GB a month.
Even worse, while unlimited data plans which were common a few
years ago have all but disappeared. In fact, we found less than 5%
of plans to offer unlimited data (these plans were removed from the
data plotted in Figure 1). Unfortunately, we cannot investigate the
popularity of each data plan because the pricing dataset does not
include the number of subscribers for each plan.

To better display how little data these plans offer, on the right,
Figure 1 illustrates how many hours of downloads (or uploads) a
10GB plan offers given current 3G/4G bandwidth found in three
major US cities: New York, Los Angeles, and Chicago. We use
recent measurements of average download and upload speeds col-
lected by [16]. In NY alone, a 10GB monthly data plan would be
fully exhausted in less than 7 hours. Since uploads are slower, a
10GB plan could sustain about 12 hours of uploads a month. These
findings show that today’s plans offer little data to their users.

2.3 The Viability of Split Billing
To examine this issue in more depth, we perform the following

experiment. We classify the countries present in the Google dataset
in two ways: by their GDP per-capita in US$ and by the per gi-
gabyte cost of their cheapest data plan. If some of the “richest”
customers have access to inexpensive data plans then split billing
is less attractive to them. Conversely, if data plans are very expen-
sive only to those customers living in countries with low GDPs,
these customers are also less likely to afford additional content and
services.

Table 2 lists the top 10 “richest” countries in each category: by
GDP in US$ and by per-GB cost. The two datasets are completely
disjoint; seven of the top 10 “richest” countries by per-GB cost are
located in Africa, a continent that has no country in the top 10 “rich-
est” by GDP. Note that we only consider the countries listed in the
Google dataset; for example, although Luxembourg has the highest
per-capita GDP in the world, it is not listed in Table 2 because the
Google dataset does not include any data plans from Luxembourg.

Even worse, unlimited plans are equally unavailable to cus-
tomers in countries with high GDP as well as low GDP. Out of
the top 20 countries with highest GDP, only seven of them have
access to unlimited data plans. In contrast, six countries out of
the bottom 20 also have access to unlimited data. All these results
show that high-GDP customers do not benefit from cheaper plans
and more data. All these findings suggest that split billing could be
used effectively to attract this class of customers.
3http://data.worldbank.org/indicator/NY.GDP.
PCAP.CD
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Figure 1: The distribution of monthly quotas for mobile broad-
band plans (left), and the number of hours of connectivity for
monthly plans in three major US cities (right).

3. OUR SPLIT BILLING DESIGN
Split billing is the division of a customer’s data plan bill into

multiple parts. Our design deliberately avoids relying on MOs to
make changes inside their networks. This design choice leads to a
much quicker path to deploying split billing in the wild. After the
benefits of split billing have been demonstrated, MOs can then offer
different mechanisms that implement split billing support inside
their network. Therefore, we start with the following four design
goals:

1. No changes inside the network. Our system should be imple-
mented by making changes to the endpoint mobile devices
only. The design originated from our desire of quick pro-
totyping. Requiring changes to the mobile network would
drastically raise deployment costs and challenges.

2. The security of split billing should be comparable to the secu-
rity of SIM cards today. It should be very difficult for users to
bypass our security and charge for “bogus” traffic. Although
impossible to offer “perfect security” (e.g., SIM cards can
be lost and stolen, or subject to sophisticated physical at-
tacks [7]), we aim to maintain similar levels of security as
with today’s SIM cards.

3. Offer a form of accountability. Anyone, whether a user, con-
tent provider, or mobile operator, should be able to verify
who is responsible for the data plan charges.

4. Provide adequate performance. Any performance overhead
should be negligible to users.

3.1 High-Level System Overview
In our system, each mobile device manages a set of rules on how

to bill the 3G/4G data. For example, data consumed by visiting
Netflix could be billed to the user’s Netflix account, whereas data
consumed over an enterprise VPN connection could be billed to the
user’s employer. Split billing runs strongly isolated from the rest of
the system in such a way that any security compromise (includ-
ing an OS compromise) will not compromise network metering.
Periodically, our system produces a bill that tallies the 3G traffic
consumed against each of the rules entered in the system.

We rely on the mobile device’s trusted computing features (ARM
TrustZone [3]) to isolate the split billing code from the rest of
the running system and to produce an attestation for each bill
(e.g., using a mechanism similar to remote attestation provided by
TPMs [19]). ARM TrustZone enables this approach: it provides
two runtime environments called the normal world and the secure
world, with hardware support for isolation. This ensures that se-
cure world memory is isolated from the normal world. The OS
and all applications run in the normal world, and only the trusted
components that implement split billing run in the secure world. A



GDP Per-Capita Cost per GByte
1. Switzerland Algeria
2. Australia Papua New Guinea
3. Denmark Cameroon
4. Sweden Iraq
5. Canada Angola
6. Holland Haiti
7. Austria Zimbabwe
8. Finland Chad
9. United States Mali
10. Belgium Sierra Leone

Table 2: Top 10 countries by GDP per-capita and cost per giga-
byte.

more in-depth description of the ARM TrustZone technology can
be found in [3].

This high-level description raises two challenges. First, what is a
good abstraction for encapsulating the set of rules on a device that
dictates how to split the the user’s 3G bill? Second, how can we
implement this abstraction securely by leveraging the TrustZone
found on commodity ARM-based mobile devices?

3.2 Implementing Split Billing with SIMlets
To implement split billing, we develop a new abstraction, called

a SIMlet. A SIMlet corresponds to a billing account, is issued by
a content provider, and is destined to a smartphone user. A SIMlet
also includes a rule that dictates the conditions under which 3G
data is billed against the SIMlet. For example, Netflix could issue a
SIMlet that specifies all 3G data to or from netflix.com is to be paid
for by Netflix.

The issuer of a SIMlet is a content provider identified by its do-
main name and the recipient is a smartphone user identified by their
phone number. A SIMlet has a start and an end date and can be used
only during this time. We use Berkeley Packet Filter (BPF) syntax
to specify the SIMlet’s policy, although SIMlets could use a more
expressive policy language if needed. Finally, SIMlets are signed
by their issuers to prevent their modification.

3.3 Trusted SIMlet Manager
Each smartphone has a trusted SIMlet manager whose role is

to request and store SIMlets. The SIMlet manager runs inside
the TrustZone secure world and is therefore isolated from the
smarthone’s OS and applications. Any application can ask the SIM-
let manager to request a SIMlet from a remote website. The SIM-
let manager contacts the remote content provider, authenticates to
it, and requests the SIMlet. The manager then stores the SIMlet
locally and signals to the application whether the SIMlet request
was successful or not. We envision two ways in which the trusted
SIMlet manager can authenticate to a remote website, either using
primitives provided by the physical SIM card or using TPM-like
remote attestations.

Once it issues a SIMlet, a remote content provider commits to
pay for a portion of the user’s traffic. The provider is free to share
this information with the MO if it wishes to do so. This could help
with streamlining the customer’s payment process, or it could form
the basis for further negotiations between the MO and the content
provider with respect to bandwidth prices.

3.4 Trusted Metering with SIMlets
Our system runs a trusted meter in the secure world whose role

is to match network traffic against the appropriate SIMlets. For
this, an application explicitly requests that the trusted meter bill its
traffic against a particular SIMlet. The trusted meter instantiates a

// find a simlet that can be used for our destination
IPSimlet ips = IpSimlet.DefaultSimlet;
foreach (IPSimlet tmp in SimletStorage) {
if(tmp.Issuer.Contains(“hulu.com”)) {

ips = tmp;
}

}

// create socket
Socket s = new Socket(AddressFamily.InterNetwork, 

SocketType.Stream, ProtocolType.TCP);
IPHostEntry ipHostInfo = Dns.Resolve(“www.hulu.com”);
IPAddress ipAddress = ipHostInfo.AddressList[0];
IPEndPoint ipe = new IPEndPoint(ipAddress, 80);

// bind the simlet to the socket
s.BindSimlet(ips);   

//connect
try {
s.connect()

} catch(SimletException sime) {
Console.WriteLine(“SimletException: {0}”, sime.ToString());

} catch(SocketException socke) {
Console.WriteLine(“SocketException: {0}”, socke.ToString());

} catch(Exception e) {
Console.WriteLine(“Unexpected exception: {0}”, e.ToString());

}

Figure 2: C# code fragment for creating a socket and binding a
SIMlet to it.

matching rule in a forwarding table that will match the application’s
traffic and meter it appropriately. To implement this approach, we
use sockets and packet filters.

When opening a socket, an application requests a SIMlet that
is then bound to the socket. This binding operation allows appli-
cations to decide which SIMlets they want to use, which ensures
that the user has control of this process. Once a socket has been
bound to a SIMlet, the smartphone OS will send all outgoing net-
work traffic from the socket buffer to the TrustZone secure world.
Once in the secure world, the SIMlet packet filter rules are evalu-
ated for billing, and then the data is handed to the network stack.
For incoming traffic, the network stack decides which packets are
destined to which sockets, and then checks if the socket has a SIM-
let bound to it. If so, the SIMlet is evaluated, and then the packets
are handed off from the secure world back to the socket in the nor-
mal world. Figure 2 shows a C# example of how to create a TCP
socket and bind a SIMlet from hulu.com to it.

4. SERVER-SIDE SPLIT BILLING
Another design alternative is to implement split billing on the

server-side. The advantage of such a design is that it does not re-
quire any modifications to clients, and there is no need to leverage
trusted computing for strong isolation. Servers are trustworthy be-
cause they are already under the control of the content provider,
unlike mobile devices. However, a server-side architecture must
solve the following two challenges.

First, content providers need to distinguish what type of net-
work link (e.g. Wi-Fi vs. 3G) their customers use to connect to
their services. This step must be done securely; a process relying
on customers to notify servers when using 3G versus Wi-Fi could
be abused. To qualify for rewards and subsidies, customers could
cheat and claim they are using 3G when actually using Wi-Fi.

Instead, servers must classify IP addresses as 3G or Wi-Fi with-
out the cooperation of clients. Since MOs control the space of IP
addresses allocated to their 3G clients, one possibility is to ask the
MOs to help with IP classification. Unfortunately, MOs do not cur-
rently advertise what IP address ranges they use for 3G, and, in
our experience, they are reluctant to share this knowledge with app
developers and content providers at large.

Another possibility is to use network measurements rather than



Figure 3: Overhead of RPC from normal world into secure one
as a function of the size of RPC data.

MO cooperation to build catalogs of 3G IP addresses. Such a
map can be constructed by combining a variety of techniques that
gather information about IP addresses (e.g., reverse DNS lookup,
autonomous system (AS) lookup, traceroute) and use various reg-
istries (e.g. RouteView [1], whois) to lookup information [17].

The second challenge is traffic counting. Server infrastructure
is often geographically distributed, and sometimes these servers
can be in different administrative domains under someone else’s
control, such as the case with content delivery networks (CDNs),
or hosted servers (e.g., Microsoft’s Azure or Amazon’s AWS). It
is often difficult to count traffic accurately across different servers
placed in different organizations.

The major advantage of the server-side alternate design is that
it requires no software deployment on the client, and thus there
is no need for client-side trusted computing hardware. However,
in the absence of cooperation from the MO, we think the problem
of accurate IP address classification may be quite challenging to
overcome. If IP classification is inaccurate, attackers will find ways
to exploit it and cheat the split billing scheme.

5. PRELIMINARY EVALUATION
A key performance concern is the context-switching cost of tran-

sitioning from the normal world to secure world and back. To un-
derstand these costs, we performed a series of experiments in which
the normal world executes a Remote Procedure Call (RPC) that
transitions to the secure world, copies the RPC’s arguments, and
returns back a result. Such an experiment is a rough approximation
of the split billing overhead as we must transition into the secure
world each time data has to be metered.

Because all data sent through a socket with a SIMlet bound to it
must be copied into the secure world, in our experiments we look at
the cost of sending data of various sizes (40 bytes, 800 bytes, 2 KB,
4 KB, and 1 MB) in addition to performing null RPCs (i.e., no data
copies). Each experiment is repeated 100 times and we present the
average result and the standard deviation. Our experiments were
done on an NVidia Harmony board with the Tegra 250 SoC. This
SoC contains a dual core ARM Cortex A9 CPU running at 1 GHz
with 1 GB of RAM.

Our results show that the cost of such transitions is very low. A
null RPC call takes on average 624 nanoseconds with a standard
deviation of 11.6 ns. Figure 3 shows the cost of an RPC call as a
function of the size of the data copies. We find the cost of RPCs
meets the performance needs of split billing. Even when copying
1MB of data to the secure world, the transitioning overhead due to
metering is about 3.5 milliseconds.

6. RELATED WORK
A recent paper suggests that MOs should use time-dependent

pricing of mobile data to manage their demand [8]. Similar to our
work, this work’s motivation stems from the huge growth in the
demand for mobile data and the lack of capacity. However, charg-
ing more for data (which is what time-dependent pricing must do
to reduce demand) makes mobile data plans even worse than they
currently are. Instead, this work takes a different approach by en-
gaging content providers and app developers in sharing the costs of
mobile data.

Our system design borrows ideas from trusted computing hard-
ware primitives to protect integrity and confidentiality for code and
data [15, 12, 20, 11, 14]. Most of this previous work leverages
the Trusted Platform Module (TPM) chips found on x86 hardware
platforms [15, 12, 11]; few projects investigate the use of ARM’s
trusted computing primitives (ARM TrustZone) [10, 14, 20].

Our work has many parallels to the network neutrality debate
and Section 7 examines this issue in more depth. Several previ-
ous projects have built and deployed techniques for quantifying the
prevalence of traffic shaping on the Internet [18, 6], and recent work
investigates the presence of traffic shaping in 3G networks [2].

7. DISCUSSION
This section presents three issues facing our implementation and

the reasons why we remain optimistic that our system can over-
come them. We do not claim to understand all issues our system
will face in practice, nor that our way of addressing them will be
the most effective. Our main goal is to obtain feedback at an early
stage.

Split billing will increase the diversity of bandwidth pricing
models which will in fact increase the incentives for traffic dis-
crimination. It is true that split billing does not enforce the elim-
ination of traffic discrimination. Large content providers can still
negotiate preferential rates for their customer’s traffic. However,
one of the benefits provided by split billing is that it makes the net-
work and traffic pricing more transparent. We believe that small
content providers can only gain from increased transparency into
data pricing and from access to a means for subsidizing their cus-
tomers’ bandwidth costs. Today’s lack of transparency only hurts
them, whereas our system democratizes access to billing agree-
ments.

Mobile operators (MOs) fear of commoditization. Our sys-
tem provides a simple way for content producers and users to enter
agreements on who pays for bandwidth. One could argue that such
agreements will make MOs feel that they have less control over
the price of bandwidth and increase their fear of commoditization.
Although we acknowledge that split billing might produce such an
impression to MOs at first, we think MOs would embrace our sys-
tem because it gives any content provider a simple way to pay for
the bandwidth of its customers. Ultimately, MOs carry the traf-
fic and thus can exert control over bandwidth prices. Also, split
billing increases the pool of payees by including content providers
(or any third-party) who may be willing to pay higher prices than
consumers can tolerate.

Running a part of the billing system on a mobile device is too
much of a security risk. This concern is serious – a security com-
promise of the TrustZone components of our system would allow
an attacker to bill arbitrary 3G data traffic to any SIMlet. One way
to mitigate this threat (other than the obvious way of strengthening
the security of our system) is to build a way for content providers
(or MOs) to audit the bills. For example, a content provider could
also meter a customer’s traffic on the server side and check whether



the bill presented by the customer matches the amount of traffic
recorded at the server. Such audits do not have to run continuously
and check all customers; instead, spot-checks would be able to de-
termine whether our system provides adequate security.

8. CONCLUSIONS
This paper puts forward the idea of split billing: allowing con-

tent providers and app developers to pay for the traffic generated by
mobile users when visiting their websites or using their services.
We present a preliminary design of split billing on the client-side,
without requiring any cooperation from the mobile operators. We
believe that a client-side design offers a quick way to deploy split
billing in the wild because it makes no assumptions about the net-
work and takes no dependencies on the mobile operators.

To implement split billing securely on the client-side, we intro-
duce a new trustworthy computing abstraction, called a SIMlet. We
present a simple C# API on how SIMlets can be used by mobile ap-
plications. Finally, our evaluation shows that the overhead of copy-
ing data to and from the ARM TrustZone, an operation necessary
for implementing SIMlets in a trustworthy manner, is low.
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ABSTRACT
The current architecture supporting data services to mobile devices
is built below the network layer (IP) and users receive the payload
at the application layer. Between them is the transport layer that can
cause data consumption inflation due to the retransmission mecha-
nism that provides reliable delivery. In this paper, we examine the
accounting policies of five large cellular ISPs in the U.S. and South
Korea. We look at their policies regarding the transport layer re-
liability mechanism with TCP’s retransmission and show that the
current implementation of accounting policies either fails to meet
the billing fairness or is vulnerable to charge evasions. Three of the
ISPs surveyed charge for all IP packets regardless of retransmis-
sion, allowing attackers to inflate a victim’s bill by intentionally re-
transmitting packets. The other two ISPs deduct the retransmitted
amount from the user’s bill thus allowing tunneling through TCP
retransmissions. We show that a “free-riding” attack is viable with
these ISPs and discuss some of the mitigation techniques.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.1 [Network Archi-
tecture and Design]: Packet-switching networks; C.2.6 [Inter-
networking]: Standards

Keywords
Cellular Networks, TCP Retransmission, Accounting, Charging

1. INTRODUCTION
Cellular 3G/4G data traffic is rapidly increasing. The volume

is predicted to reach 10.8 Exabytes per month in 2016, which is
an 18-fold increase from that of 2011 [1]. The number of cellular
network users has already reached 1.2 billion worldwide [2], and it
is estimated that 85% of the world population will subscribe to the
cellular network service by 2017 [3].

Given the increasing demand in the cellular traffic, accurate ac-
counting of the traffic usage becomes all the more important. Most
cellular ISPs adopt the pay-per-usage charging model for cellular
Internet access. Subscribers typically buy a monthly usage plan
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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(e.g., 3 GB per month) and the ISPs enforce it by byte-level ac-
counting of the consumed IP packets. However, this approach presents
an important policy decision for the TCP traffic. ISPs now need to
decide whether they account for retransmitted TCP packets or not.
If the ISPs reflect the retransmitted packets into the bill, it may be
unfair to the users especially when the packet delay variance or
losses are due to a poorly-provisioned infrastructure. In our mea-
surement at one ISP in South Korea, we observed some flows with
up to 93% of the packets being retransmitted due to packet loss.
What is worse is that the blind accounting policy can be easily
abused by malicious attackers that try to inflate the cellular traf-
fic usage for a specific user or even for all users from a specific ISP.
The natural alternative is to remove the retransmitted packets from
the bill, but accounting becomes expensive since it has to manage
every TCP flow for each subscriber.

In this work, we present the implications of byte-level account-
ing policies in the cellular traffic for TCP retransmission. The root
cause of the problem lies in that the majority of the mobile data traf-
fic flows over TCP [4–7], which ensures the flow-level reliability by
transparently retransmitting the lost packets [8]. However, the ISPs
account for each IP packet, which sometimes creates a disparity in
what users perceive and what the infrastructure provides.

To better understand the current practice, we examine the ac-
counting policies for TCP retransmission with five large cellular
ISPs in the U.S. and in South Korea. Surprisingly, we find that the
accounting policies vary between ISPs, and that even the ISPs in
the same country have different policies. Our measurements reveal
that three ISPs (two in the U.S. and one in South Korea) account for
every packet regardless of TCP retransmission. We further confirm
that the users in these ISPs can be the target of a usage-inflation at-
tack that maliciously retransmits packets even if there are no packet
loss. The remaining two ISPs (both in South Korea) intentionally
remove the retransmitted amount from the usage statistics. How-
ever, we find that their implementation allows free data transfers
if attackers tunnel their packets inside TCP retransmissions. This
implies that the ISP accounting system checks only the TCP head-
ers for retransmission and does not check the actual content of the
payload; doing so could be expensive in terms of storage and com-
putation to recall previous payload contents, and compare them to
suspected retransmissions.

Our contributions in this paper are summarized as follows. First,
we report that the current byte-level accounting for TCP retransmis-
sion fails to meet the fairness nor the correctness in billing. Blind
accounting of every packet leads to unfair usage inflation if the re-
transmission happens due to infrastructure-induced congestion or
degraded wireless links. Second, we show that the current practice
of cellular traffic accounting is vulnerable to attacks that either in-
flate the usage or send the packets without being charged. Peng et.
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Figure 1: Overall architecture of 3G/4G cellular network

al. showed a similar attack exploiting a loophole in an ISP policy
that blindly passes all packets on port 53 (DNS) at no charge [9,10].
While their work can be considered as "bugs" in the accounting pol-
icy, we believe that the accounting policy for TCP retransmissions
is a fundamental problem tied to the basic mechanisms of the TCP
layer. We argue that cellular ISPs should not count retransmitted
bytes against the user’s data plan, but they should also make sure
that the retransmissions are legitimate to prevent abuse. Later in
this paper, we discuss a few possible solutions that can be used to
prevent (or mitigate) the vulnerability while maintaining a reason-
able accounting load even for high-throughput networks.

2. BACKGROUND
In this section, we describe the basic architecture of 3G/4G cel-

lular networks and their accounting process. We mainly focus on
the Universal Mobile Telecommunications System (UMTS) [11]
for 3G and Long Term Evolution (LTE) [12] for 4G. The architec-
ture is based on a Packet-Switched (PS) domain, in which the data
is transferred in packets [13,14]. Although we mainly focus on 3G,
similar argument can be made for the 4G system as well.

2.1 3G/4G Accounting System Architecture
Figure 1 shows the overall architecture of UMTS/LTE cellular

network. The User Equipment (UE, i.e. cellular devices such as
smartphones, tablet PCs, etc.) communicates with a target server
in the wired Internet by passing the packets through the UMTS,
which consists of a Radio Access Network (RAN) and a Core Net-
work (CN). The RAN is responsible for allowing wireless access to
the UE and for providing a connection to its CN. Inside the RAN,
Node B, a base station for transmitting and receiving data directly
with the UE through an air interface, is controlled by a Radio Net-
work Controller (RNC), which manages radio resources and UE
mobility. In 4G, the RAN consists of only E-UTRAN Node B (eN-
odeB) without a RNC since eNodeB also has the control function-
ality embedded in it.

After passing through the RAN, the packets from a UE enter
the General Packet Radio Service (GPRS) through Serving GPRS
Support Node (SGSN), which is responsible for delivering packets
to or from the UE within its service area. Then, the Gateway GPRS
Support Node (GGSN) converts the GPRS packets coming from the
SGSN into an appropriate Packet Data Protocol (PDP) format such
as IP, and sends them out to an external data network such as the
wired Internet where the target server is located. In 4G networks,
the basic procedure is the same except for the fact that the SGSN
is replaced with a Serving Gateway (S-GW), the GGSN is replaced
with a packet data network gateway (P-GW), and the UE’s mobility
is handled by a mobility management entity (MME).

The cellular data accounting is carried out inside the CN in the
form of a Charging Data Record (CDR), which includes the in-
formation necessary for billing such as the user identity, the ses-
sion and the network elements, and services used to support a sub-
scriber session. The CDR is generated by the serving nodes (SGSN,
GGSN, S-GW, P-GW) and is forwarded via the Charging Gateway
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Figure 2: GPRS packet format inside the CN

Function (CGF) with the charging information to the Billing Sys-
tem (BS). The CGF can be located anywhere: in an external inter-
face, in every GSN, or in a particular GSN to serve other GSNs.

2.2 3G Accounting Process
When a user establishes a connection with a target server to

download some content, it triggers both GSNs to create their own
CDRs (S-CDR, G-CDR) related to PDP contexts with the UE’s
unique charging ID (C-ID) to collect the charging information. The
SGSN collects the charging information related with the radio net-
work usage while the GGSN collects that of the external data net-
work usage. The standard charging information collected by GSNs
are the radio interface, usage duration, usage of the general packet-
switched domain resources, source and destination IP addresses,
usage of the external data networks, and the location of the UE.

While the UE downloads its requested content from the target
server through the cellular network, the GSNs record the traffic
volume arriving to the CN in the form of T-PDU (Figure 2). The
T-PDU is the original IP packet received from either the UE or the
target server, which is then converted in the CN to move around
the GSNs. The T-PDUs are passed between GSN pairs via GTP-U
tunnels by attaching the GTP-U header at the front [15]. The ac-
counting process continues until the communication is completed
and the UE tears down the connection. When the session is fin-
ished, the CDRs stored in the GSNs are forwarded to the BS via the
CGF and are processed to calculate the total data volume consumed
by the particular session. For byte-level accounting per user, most
cellular ISPs account for entire IP packet sizes while their policies
differ as to whether they include retransmitted TCP packets or not.

3. ACCOUNTING CHALLENGES IN TCP
In this section, we discuss the accounting issues in TCP-based

Internet services in cellular networks. Since the majority of the
cellular traffic is based on TCP, accounting of the TCP traffic di-
rectly affects the user bill. We first present the service provider’s
dilemma in accounting for TCP-level retransmission, and discuss
the level of retransmission measured in real networks.

3.1 The Cellular Provider’s Dilemma
From the cellular ISP’s perspective, all headers and payloads

from OSI layer 3 and above should be counted as well as retrans-
missions from layer 4 since they are consuming the cellular net-
work’s resources. However, packet retransmissions depend on the
network conditions that are typically beyond the control of users.
From the perspective of users, the useful data sits in the applica-
tion layer and only the volume in the application layer should be
counted. If the cellular service providers choose the latter, retrans-
mission packets will be treated as a simple overhead. One such
implementation is to bypass all retransmission packets whose TCP
sequence numbers are older than the next expected sequence num-
ber. While this approach is efficient in that it checks only the TCP
headers, we find that a naïve implementation is dangerous in prac-
tice.

This situation opens up possible attacks on either side of the
dilemma as shown in Figure 3. If the provider accounts for the
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(b) “Free-riding” retransmission attack: 1) The UE attaches a
fake TCP header tunneling the real packet and sends it to a TCP
proxy. 2) The core network recognizes the packet as retransmis-
sion and does not account for it. 3) The TCP tunneling proxy
de-tunnels the packet and forwards it to the destination server.
4) The destination server accepts the packet thinking that it is
communicating to the TCP proxy.

Figure 3: Attack scenarios that abuse cellular data accounting policies for TCP-level retransmission
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Figure 4: CDF of the retransmission ratios of the flows that
experience any packet retransmission in a 3G network

retransmissions, an attacker can deplete a user’s data plan, or if
the provider ignores retransmissions, it is possible to tunnel traf-
fic for free if the accounting system does not perform deep packet
inspection (DPI). For the latter, we propose to hide our traffic in-
side of TCP retransmission packets. The basic idea is to send the
traffic via a TCP proxy to the destination servers. A mobile client
wraps the real TCP traffic in a fake TCP header that looks like a re-
transmission packet, and sends it to the TCP proxy, and the proxy
de-tunnels the real TCP packet and forwards it to the destination.
The traffic from the destination is again wrapped in a TCP header
that uses an old sequence number by the proxy and is forwarded to
the mobile client. This way, a real TCP session can be tunneled in
a fake TCP session that avoids accounting.

3.2 Packet Retransmission in Cellular Networks
To determine the level of retransmission in real-world cellular

networks, we measured the retransmission ratio at one of the largest
cellular ISPs in South Korea. We mirrored the 3G traffic at one of
10 Gbps links just below a GGSN in Seoul, and inspected all TCP
flows for 3 hours during the daily peak time (2012/09/29 9PM-
0AM). We observed 134,574,018 flows with 6.64 TBs of IPv4 pack-
ets. Our monitoring system manages each TCP session by keeping
track of TCP connection setup and teardown, sequence numbers,
ACKs, and timeouts without a single packet drop during the mea-
surement period.

Overall, we find that the retransmission ratio is reasonably low,
which implies that the cellular networks are well-provisioned. Only
1.89% of the flows show a positive number of packet retransmis-
sions during the period. This is in part because the majority of the

Cellular ISP Test Client Device
AT&T (US) Apple iPhone 4 (iOS 5.1.1 - 9B206)
Verizon (US) Apple iPad 2 (iOS 5.1.1 - 9B206)

SKT (South Korea) Galaxy S3 (Android 4.0.4)
KT (South Korea) Galaxy S3 (Android 4.0.4)

LGU+ (South Korea) Galaxy S3 (Android 4.0.4)

Table 1: Test client devices for each cellular ISP

flows are small (almost 90% of them are smaller than 32 KB) and
are short-lived. However, we do find that some large flows expe-
rience severe packet retransmissions with as much as 93% of the
packets in the flow being retransmitted as shown in Figure 4. This
situation can be aggravated by poor provisioning, causing lost or
delayed packets at the mobile station and forcing TCP retransmis-
sions.

While our measurements imply that accounting for retransmis-
sions would not incur a noticeable usage blowup for most sub-
scribers for now, the users could be the victim of malicious retrans-
missions that inflate the usage. For example, attackers could par-
ticipate in popular web sites as advertisers such that their advertise-
ment content is served by a malicious server with a non-compliant
TCP stack that intentionally retransmits TCP packets without wait-
ing for timeouts. This way, the attacker can manipulate the ac-
counting mechanism of competing ISPs or blow up the usage of a
particular user. In our experiments in Section 4, we show that one
can inflate the byte usage arbitrarily if the ISPs blindly account for
retransmissions.

4. RETRANSMISSION EXPERIMENTS
In this section, we run various tests to figure out the account-

ing policies currently being enforced in commercial cellular ISPs.
Table 1 shows five large cellular ISPs in the U.S. and South Ko-
rea used in our tests as well as the test client devices and their OS
versions. We download a file from our custom Web server that
manipulates the TCP packets to test a number of retransmission
scenarios, and verify whether the accounted volume by the ISP and
the byte count in the captured packet trace at clients match.

4.1 Test Setup
To generate retransmission packets at will in the middle of a TCP

connection, we build our own server that serves a web object. Our
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Figure 5: Example packet flows of our tests

custom web server accepts a regular TCP connection, processes a
Web request, and serves the requested object. When a connection
is established, instead of using the accepted TCP socket, the server
opens a raw socket to read the IP packets from the client by fil-
tering the port and the address, delivers the requested content, and
sometimes injects retransmission packets to gauge the accounting
policies. This way, we can create our own TCP/IP headers for each
outgoing packet and confirm the ACK number from the client. For
simplicity, our server maintains a TCP window size of one packet
and does not implement congestion nor flow control.

In the client side, we use wget to fetch the content from our
server. For accurate verification of the accounting volume, we ei-
ther root or jailbreak our devices and run packet capture programs
such as tcpdump [16] or pirni [17]. We collect all packet traces
at clients during the test and compare the byte count with the ac-
counted number provided by each ISP. After each download test,
we turn off the cellular network interface on the client device and
wait until the accounted data volume of the ISP is refreshed. We
divide the measured volume into various categories such as normal
ACKs without payload, normal data packets, duplicate ACKs, and
retransmitted data packets. TCP packets for connection handshake
and teardown, and other background traffic are carefully excluded
from the results by subtracting them from the total value.

4.2 Experiments and Results
We use five main experiments to determine the accounting poli-

cies of various cellular service providers regarding DNS packets
and TCP retransmission packets. We include DNS tests to verify
the accounting policy loophole reported by recent works [9,10] and
to reflect the policy into the measured results. Each test is run three
times and we show the average value. The ISPs are addressed by
number, with ISP-1, 2 and 3 based in South Korea and ISP-4 and
ISP-5 being based in the United States. We note that ISP-1 and
ISP-4 provide an accounting granularity of 1 KB, ISP-2 and ISP-3,
a granularity of 100 KB, and ISP-5, a granularity of 1 MB.

4.2.1 DNS Packet Accounting
Peng et. al. recently report that packets with the DNS port are

considered as a free service and are not accounted for in a number
of ISPs [9, 10]. Our first step is to verify this claim by running
DNS lookups of 10,000 different domain names and comparing the
data volume seen by the client and by the ISP. In our measurements
in October 2012, we found that ISPs 1, 2 and 3 do not account
for UDP-based DNS packets, but we were surprised to discover
that ISP-4 and 5 account for all DNS packets, suggesting that some
providers have already started to react to the DNS tunneling reports.
In addition, we check whether the TCP packets going through port
53 (DNS) are considered free by downloading some content on the
DNS port. We confirm that ISPs 1, 2, 3 that do not account for
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Figure 6: Experiment results of ISP-1

UDP-based DNS packets do charge for all TCP packets on port 53,
thus DNS tunneling attacks are not possible with these ISPs.

4.2.2 Content Transfer without Packet Loss
As a base case, we compare the measurement results by down-

loading a file over a reliable link without any intentional packet
retransmissions. This test is to verify whether the ISPs account
for the traffic accurately in a normal situation with little packet
loss. We calculate the theoretical value and compare it with the
ISP’s accounted volume as explained below. For each test, we con-
firm the absence of packet retransmissions by checking the cap-
tured packet traces. We compare the accounting values from three
sources; the ISP, the mobile client, and the theoretical model. We
calculate the theoretical value by taking into account the TCP con-
nection setup/teardown, ACK and data packets including headers
from layer 3 and up, and the background traffic from other local
processes running on the mobile client. We find that all ISPs ac-
count for the proper amount of the data volume in this test, con-
firming the accurate accounting in the base case.

4.2.3 Controlled Retransmissions
We also run the test that intentionally injects retransmission pack-

ets between each data packet. We initiate a TCP connection from
the mobile client, make sure that the server goes through the TCP-
handshake, and then have the server send a pre-determined number
of retransmission packets per each data packet. From the size of
the original data to be transmitted, we can easily calculate the to-
tal volume, as the retransmissions will act as a simple multiplier.
Figure 5(a) shows the test scenario.

We wait for the mobile device to ACK a retransmitted packet
before sending another one to ensure proper reception. We test each
ISP with 9 retransmissions per each data packet (e.g., 10 identical
data packets in total, a blowup by a factor of 10 in the real payload).

We discover that only two ISPs in South Korea (ISP-1 and ISP-
2) do not account for the retransmission packets while the others
do. The two leftmost bars in Figure 6 and Figure 7 show the results
of ISP-1 and ISP-2. We download a 1 MB file for ISP-1 while we
use a 10 MB file for ISP-2 since ISP-2 supports 100 KB accounting
granularity. Interestingly, we see that the accounting policy differs
from ISP to ISP even in the same country. ISP-3 in South Korea
accounts for every packet regardless of retransmission. We also
note that the accounting policies for ISP-1 and ISP-2 are slightly
different. While they both ignore retransmitted data packets, ISP-2
accounts for duplicate ACKs while ISP-1 ignore them for account-



ing. We confirm that the other three ISPs count every retransmis-
sion, showing a blowup by a factor of 10 from the original file size
in the accounted volume. For this reason, we leave out the graphs
for these ISPs. This test implies that the users in these ISPs can be
the victim of usage-inflation attack.

4.2.4 Quasi Retransmissions
The next question is how the service providers would account

for partial retransmissions where the next packet overlaps partially
with the previous packet. More specifically, the server increments
the current window by just one byte, but the data content is much
larger. The resulting stream is one where the sequence numbers are
not directly repeated, but the data content largely overlaps. This
will tell us if the service provider accounts by data packets, or takes
the actual data window of a TCP packet into account. We send a
small amount of application layer data (10KB, 75KB), but make
sure that the packet window is only incremented by one byte, al-
though the payload of each packet contains over 1.3 KB of content.
We omit the ISPs that charge for retransmissions since they only
account for the complete volume anyway.

The two middle bars in Figure 6 show the result for ISP-1. We
see that the accounted value is actually less than the data volume
excluding the retransmitted data packets. This is due to the ISP not
charging the TCP/IP headers for data with partially-retransmitted
payload. ACK packets are all counted since each ACK packet has
its acknowledgement number increased by one. On the contrary,
ISP-2 (middle bars in Figure 7) accounts for all TCP/IP headers
but not the retransmitted payload itself. This could be explained
by an ISP that checks the sequence number and the packet length
to identify the actual data volume but charges for the entire header
since there is at least one byte of new payload.

4.2.5 Tunneling through Retransmissions
Finally, we measure if the service providers verify that the data

content of retransmissions do in fact contain a copy of the previous
packet’s payload data. If they only rely on the TCP headers, an
attacker could set up a covert channel in the payload field of the
TCP retransmission packets to avoid data charges. We were also
careful to set the sequence number of the retransmission packets to
be within the range of the most recently-ACK’ed packet to prevent
middleboxes or the recipient’s OS kernel from dropping packets
with old sequence numbers.

The two rightmost bars in Figures 6 and 7 show that both ISP-1
and ISP-2 do not account for retransmitted packets with different
payload. This makes intuitive sense since deep inspection of the
TCP payload of every packet would be space and time consuming.
From this test, we conclude that all ISPs that do not account for
retransmitted packets are open to TCP-retransmission tunneling.

5. MITIGATION
To provide fair accounting, one can decide to account for retrans-

mitted packets but block the “usage-inflation” attack or decide not
to account for retransmitted packets but defend against the “free-
riding” attack. The former makes sense if we can assume a low le-
gitimate packet loss rate throughout the cellular infrastructure, but
it could penalize users that are already getting poor coverage ser-
vice. Instead, we focus on the latter here and briefly propose three
plausible mitigation techniques against “free-riders”.

Detection of Abnormal Retransmission. The cellular ISP may
set a limit on the number or ratio of retransmission packets per
flow. The GSN detects an abnormal flow with the number of re-
transmissions exceeding a certain threshold, and alerts the ISP of
a possible attack. Once a flow turns out to abuse the retransmis-
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Figure 7: Experiment results of ISP-2

sion policy, the ISP can decide to either charge all retransmission
packets or explicitly close the connection. This approach is attrac-
tive since it requires only small states per each flow (e.g., number
of retransmissions per packet, retransmission ratio, etc.), not caus-
ing much overhead on the CN. However, the major disadvantage of
this method is that it could incur a false-positive alarm. We have
shown that even a legitimate flow experiences the retransmission
ratio of 93% in poor cellular network environments. Therefore,
naively setting a threshold could result in penalizing innocent users
or tunneling attacks, depending on the value of the threshold.

Deterministic DPI. A more accurate solution is to run DPI on all
TCP flows where the system temporarily stores the content in ev-
ery flow and compares the payload if it detects a retransmission. A
bytewise comparison over the retransmitted range can ensure iden-
tical retransmission content. This method is advantageous in that
it can completely remove the false-positive alarm. One obvious
drawback, however, is that it could incur high system overheads of
managing the buffer of every TCP flow. In our measurement at a
10 Gbps 3G backbone link, we see up to 1.3 million new TCP flows
per minute with 270 K concurrent flows at peak. In the worst case,
an accounting system should handle tens of millions of packets per
second per 10 Gbps link. We are currently building a middlebox
system that can manage 100Ks of concurrent flows for a 10 Gbps
link by careful buffer memory management and parallel processing
on a multicore system. However, it would be still challenging or
costly if it requires multiple load-balanced machines.

As a hybrid solution, one might set a small threshold for detect-
ing abnormal retransmissions and run deterministic DPI only if the
retransmission ratio is beyond the threshold. This would greatly
reduce the system overhead by bypassing the majority of normal
flows, and could detect long-lived flows that tunnel packets. How-
ever, it is still not perfect if a sophisticated attacker carefully man-
ages small flows that do not trigger the alarm.

Probabilistic DPI. To reduce the memory requirements, we pro-
pose a lightweight method where the CN only has to inspect a ran-
dom part of the TCP payload. Thus, between two candidate re-
transmissions, this method needs to (1) look in the same places in
the payload and (2) find the same bytes at those positions. For step
(1), we can use the sequence number as an index into a table con-
taining n random locations per packet where bytes will be extracted
from the payload. We could use a random number generator with a
secret number as a seed to determine the n-byte locations per each
flow. For step (2), once we have extracted some bytes from the
same location on both packets, we can compute the difference be-



tween those n-byte sequences. If it is anything other than 0, we
can confirm that the retransmission payload is different from the
original payload.

We note that we have only reduced the space complexity by a
constant factor, from a full TCP payload to an n-byte representa-
tion, but storing a fraction of the payloads at minimal computing
costs will help in the real-world implementation. The probability
of collisions between the original payload and an arbitrary payload
decreases exponentially as n increases, making the scheme quite
space efficient. We also note that it would increase false negatives
if n is too small. We plan to identify the appropriate n by analyz-
ing multiple variables in TCP flows, including the average payload
length, the probability of overlapping sequence number ranges in
the retransmitted packets, the number of concurrent flows, and the
average congestion window size.

6. RELATED WORKS
Peng et. al. have recently reported loopholes in some cellular

ISPs that allow attackers to obtain free cellular Internet access by
tunneling the data on the DNS port, since DNS is viewed as a free
infrastructure service and the payloads are not inspected [9, 10]. In
our measurements, we find that TCP packets on the DNS port get
charged even for the ISPs that allow free UDP-based DNS packets.
Running DPI on the DNS packet would incur relatively small over-
heads since the number of DNS packets is typically much smaller
that that of other data packets and each DNS packet is just a few
hundred bytes. In addition, we have shown that there is a more
fundamental issue in cellular data accounting for TCP-level packet
retransmission. Building a DPI-based cellular accounting system
that analyzes every TCP packet going through the CN remains to
be a challenge.

Lee provides one of the early works that measure the retransmis-
sion rate over CDMA 1x EV-DO service [18]. The author finds
that the average retransmission rate of a flow reaches up to 4.7%
with 92% burst retransmissions in the uplink. The retransmission
ratio shows a similar characteristic to our experiment where larger
flows are more likely to be affected by the retransmissions. Won
et. al. show that in CDMA networks, almost 80% of the total
packets captured in the link are retransmission packets [19]. They
also find that 38% of the TCP sessions have 9 out of 10 packets
as retransmission packets, which implies that our attack could be
effective in the CDMA network as well. Jang et. al. look at the
retransmissions in HSDPA networks (3G, 3.5G) from moving cars
and express trains [20]. Their results show that when the vehicles
are on the move, the retransmission ratio increases up to 71 times
higher than that in the stationary case, implying that the users with
higher mobility will have to pay more if retransmission packets are
accounted. Gember et. al. measure the retransmission rate in Wi-
Fi networks at a university campus [21]. They show that even in
the less-congested wireless network, 5% of flows have one or more
retransmission packets where 80% of them are due to packet loss.

7. CONCLUSION
We have shown that due to the current design of the cellular

data architecture and transport layer reliability mechanisms using
retransmissions, the accounting policies either leave the user vul-
nerable to data depletion attacks, or cause the ISP to be vulnerable
to service charge evasion due to tunneling through retransmissions.
We have measured the effect of retransmissions on five major ISPs
in two countries, demonstrating the possibility of data depletion at-
tacks, or free-riding tunneling. We believe that it is possible for
ISPs to provide a fair accounting of traffic usage while preventing

free-of-charge abuse, and have proposed possible mitigations that
could be implemented with relatively low costs.
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ABSTRACT 

Smartphones have emerged as a popular and frequently used 

platform for the consumption of multimedia. New display 

technologies, such as AMOLED, have been recently introduced to 

smartphones to fulfill the requirements of these multimedia 

applications. However, as an AMOLED screen’s power 

consumption is determined by the display content, such 

applications are often limited by the battery life of the device they 

are running on, inspiring many researches to develop new power 

management schemes. In this work, we evaluate the power 

consumption of several applications on a series of Samsung 

smartphones and take a deep look into AMOLED's power 

consumption and its relative contributions for multimedia apps. We 

improve AMOLED power analysis by considering the dynamic 

factors in displaying, and analyze the individual factors affecting 

power consumption when streaming video, playing a video game, 

and recording video via a device’s built-in camera. Our detailed 

measurements refine the power analysis of smartphones and reveal 

some interesting perspectives regarding the power consumption of 

AMOLED displays in multimedia applications.  

Categories and Subject Descriptors 

K.6.2 [Management OF Computing and Information Systems]: 

Installation Management – Performance and usage measurement. 

General Terms 

Algorithms, Management, Measurement, Performance, Design.  

Keywords 

OLED display, Smartphone, AMOLED, Video power. 

1. INTRODUCTION 
Smartphones now play a large role in almost every aspect of our 

daily lives, being utilized in activities such as communication, 

personal planning, and entertainment. Although the complexity and 

capabilities of these devices continues to grow at an amazing pace, 

smartphones are now expected to continually become lighter and 

slimmer. When combined with power-hungry multimedia 

applications, the limited battery capacity allowed by these 

expectations now motivates significant investment into smartphone 

power management research. 

Multimedia applications, such as streaming video players, games, 

and image and video capturing tools, now comprise a considerable 

portion of the daily usage of smartphones. The power consumption 

of these applications depends heavily on the type of display 

technology being used, which also plays an important role in 

human-machine interaction. Many researches have already studied 

the power and performance of different display technologies [1]. 

Very recently, AMOLED (Active-Matrix Organic Light Emitting 

Diode) display panels have begun to replace conventional LCD 

(Liquid Crystal Display) technology in mainstream smartphones. 

Compared to LCD, AMOLED offers much better display quality 

and higher power efficiency because of its unique lighting 

mechanism. This unique property has led to much research 

involving the power evaluation and modeling of AMOLED as well 

as the performance variance among different AMOLED panel 

designs. However, due to the large variety of AMOLED panel 

designs and the fast pace of smartphone software development, 

most of this research only aims at a particular smartphone device 

or application. It is not clear whether there is any significant power 

efficiency improvement between different generations of 

AMOLED display technology or if it is possible to obtain an 

overview display power efficiency under different applications. 

In this work, we evaluate the power consumption of the displays of 

several high-end Samsung smartphone models. In addition to this, 

we discuss the power modeling of different generations of 

AMOLED screens and conduct a detailed power analysis of several 

popular multimedia applications. Based on the data that was 

collected, we draw some interesting conclusions which may 

influence future research in the field. For example: 

• Subsequent generations of AMOLED products do not yield the 

significant per-unit improvement in power efficiency that was 

expected. The power difference between AMOLED products is 

mainly realized by design metrics like size and sub-pixel.  

•The power consumption of chromatic color can be efficiently 

reduced by implementing a dynamic color tuning technique. 

• The power consumed during the video decoding process is 

responsible for only a small portion of the total power required for 

the end user to actually view the video. 

• In video games, the AMOLED display’s power consumption 

varies greatly, and it is relatively small in some cases when 

compared to the overall system power consumption.  

•The power consumed by the AMOLED during video recording is 

relatively small compared to the overall power consumption. 

The remainder of our paper is organized as follows: Section 2 

presents previous related work; Section 3 gives our adopted 

methodology for power evaluation, including the devices under test 

(DUTs) and the test environment setup; Section 4 models the power 

consumptions of several different AMOLED panels on Samsung 

smartphones; Section 5 presents the power analysis’ of video 

streaming players, video games, and camera recording, 

respectively; Section 6 concludes our work.  
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2. RELATED WORK 
Since its development, AMOLED technology has been the topic of 

a great deal of research, much of which has attempted to describe 

and model its power characteristics. The authors of [2] presented a 

classic AMOLED power modeling in smartphone, which is 

adopted in this paper. The authors of [3] evaluated the AMOLED 

power model’s accuracy in practical performance and helped 

application developers to improve the energy efficiency of their 

smartphone applications. OLED power model is part of the system 

power model. The display modeling of AMOLED has also been 

integrated into a system level power monitor and analyzer, as done 

in [8] and [9]. 

Power optimization schemes based on AMOLED displays have 

also been studied from the applications point of view.  The authors 

of [15] reduced the power consumed while displaying an arbitrary 

image through the use of OLED’s dynamic voltage scaling (DVS) 

technology, while the authors of [4] extended this DVS scheme into 

video streams. The authors of [7] extended the dynamic gamma 

correction power saving scheme for video games to the AMOLED 

platform. The author of [5] shows OLED screens contribute 

significantly to the energy consumption of web browser and then 

applies the optimization techniques from [6] to reduce it. These 

works pointed out that, while a smartphone spends most time idle 

when web browsing, streaming video, playing video game, and 

camera recording, the smartphone demands significant system 

resources in a continuous manner. However, we find the power 

contribution made by the OLED screen can be small. 

3. METHODOLOGY 

3.1 Devices Under Test (DUTs) 
We examined five Samsung products, including the Nexus S 

(released in 2010), the Galaxy S1, Nexus, and S2 (released in 

2011), and the Galaxy S3 (released in 2012). During the tests, the 

devices ran the Android operating system and a suite of test 

applications. The screens of all the tested devices are all based on 

AMOLED technology, though they are built with different display 

sizes, resolutions, and technology generations, i.e., Super 

AMOLED, Super AMOLED Plus and Super AMOLED HD, 

respectively. These screens well represent the evolution of 

Samsung's OLED technology in recent years.  

3.2 Power Evaluation Setup 
Many smartphone power models have been proposed in recent 

research and are included in the embedded Android power monitor 

APIs [8][9][10]. However, these models generally have limited 

adaptability to the many variations of available hardware 

configurations, incurring inevitable run-time evaluation errors [11]. 

Rather than calculating power information from software, we 

utilized an external power monitor to directly measure the battery 

behavior for power consumption breakdown with a series of 

contrast experiments. 

We adopted a mobile device power monitor produced by Monsoon 

Inc. for real time power measurement. It supports a sampling 

frequency up to 5 kHz and can be used to replace the battery as the 

power supply to the smartphone. The power monitor is directly 

connected to the smartphone and records a power histogram. 

During the power evaluation of the display modules, we disabled 

all unnecessary system services that may have caused any 

significant power consumption noise, including 4G and Wi-Fi 

network communication, background services, and power 

optimization applications. The contrast experiments are designed to 

separate the power consumption of display from that of the system, 

e.g., CPU and GPU. Most power consumption test are completed 

while the device’s screen brightness is set to maximum. The 

specific test bench details will be presented in later sections. 

4. AMOLED DISPLAY EXPLORATION 

4.1 AMOLED Power Evaluation on Sub-pixel 
Different from previous research, instead of directly measuring and 

then comparing the power consumption of each entire screen, we 

attempt to normalize the displays and compare the per-unit power 

efficiency for different AMOLED products. Because of this we 

found that, in contrast to the conclusions drawn by previous 

research, when comparing the power efficiency between different 

generations of AMOLED technology: 

Subsequent generations of AMOLED products do not yield the 

significant per-unit improvement in power efficiency that was 

expected. The power difference between AMOLED products is 

mainly realized by design metrics like size and sub-pixel matrix.  

A smartphone display is composed of many individual pixels. The 

color of a pixel is constructed via the combination of a few basic 

colors (e.g., red, green, blue, or RGB), which themselves are the 

only colors directly emitted from the display unit via tiny sub-

pixels. The display unit is defined by the arrangement of these sub-

pixels, which is known as the sub-pixel matrix design. As shown in 

Fig. 1(a), in the AMOLED displays we tested, every pixel has three 

sub-pixels corresponding to the basic colors of RGB color space. 

Unlike LCD technology, the power consumption of an AMOLED 

 

Smartphone 
Panel 

Size 
Resolution 

Nexus S 4.0” 480*800 

Galaxy S2 4.5” 480*800 

Galaxy 

Nexus 
4.65” 720*1280 

Galaxy S3 4.8” 720*1280 
 

(a)           (b)  

Fig. 1. (a) AMOLED sub-pixel matrix; (b) Smartphone 

AMOLED screen specs. 

    
(a) (b)        (c) (d) 

Fig. 2. AMOLED screen power consumption: (a) Nexus S; (b) Galaxy S2; (c) Galaxy Nexus; (d) Galaxy S3 

Solid lines are the original overall screen power consumption, dash lines are the screen power consumption normalized to 4 inch2
. 
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screen is highly color dependent. The power consumption of each 

pixel varies with the chromatic color composition that is being 

displayed, as not only do more intense colors require more power 

to display, but each individual sub-pixel has its own unique power 

distribution curve. Hence, various sub-pixel matrix designs are 

proposed to balance the lighting efficiency and display quality by 

adopting different alignments, area-to-area ratios, and etc. of 

individual sub-pixels. Fig. 1(a) illustrates the contrasting sub-pixel 

matrix designs of Super AMOELD Plus (based on identical RGB 

strips) and Super AMOLED (based on PenTile design) [12].  

In many prior works involving AMOLED screens, the pixel-level 

power modeling is often expressed as: Ppixel =f(R)+h(G)+g(B). This 

models the power consumption of a pixel as the summation of the 

power consumption of the individual RGB sub-pixels [2]. f(), h(), 

and g() are the color component dependent functions and R, G, and 

B are the input signals, which are usually represented as a grey level 

of [0, 255]. In Samsung OLED products, a standard gamma 

correction of 2.2 is applied to the input signals in order to improve 

the display quality. Thus, the relationship between the power 

consumption of the AMOLED screen and the grey level becomes 

nonlinear, as shown in Fig. 2. 

Fig. 2 also shows that the power models of different display 

modules vary significantly. One example of this is the difference 

between the Super AMOLED or PenTile AMOLED, used in 

Galaxy S3 and the Super AMOLED Plus used in Galaxy S2: the 

power consumption of the PenTile design in Super AMOLED is 

much more balanced among the different colors than the traditional 

RGB strips utilized in Super AMOLED Plus. In addition to this, 

display panels with the PenTile design also show an averagely 

lower power  efficiency than traditional RGB strip. However, as 

PenTile design aligns more low power consumping green sub-

pixels in the pixel matrix, it’s supposed to be more power efficient. 

Hence, we have to also take the display panel size into 

consideration to compare the power efficiency. 

In many existing AMOLED power measurements and models, the 

power consumption of a display panel is evaluated as a whole. The 

many different panel sizes and sub-pixel alignments available today 

make it very difficult to conduct a fair comparison of the power 

efficiency between different AMOLED technology generations. 

Therefore, we focused on analyzing the sub-pixel power efficiency. 

To accomplish this task, we first normalized the area of each 

individual sub-pixel to account for the size difference between sub-

pixels in PenTile technology. The power consumption of the entire 

AMOLED screen while displaying each basic color at every grey 

level was then recorded and scaled to represent a screen size of 4 

inch2. The normalized power consumption of the sub-pixels in each 

scaled display is depicted as the dashed lines in Fig. 2. 

Although some prior work has claimed that the power efficiency of 

AMOLED screens has as much as doubled between generations, 

i.e., from the Galaxy S2 to the Galaxy S3 [18], we found that the 

practical power improvement is not nearly that significant. For 

example, when comparing to the oldest AMOLED screen (in the 

Nexus S) to the latest (in the Galaxy S3), a jump of two generations, 

the highest pixel-level power efficiency is between only 5.7% and 

29.5% improved at a grey level of 50. Interestingly, we found that 

the most significant factor that contributes to the power 

consumption difference between the different smartphone models 

is the sub-pixel area ratio. For example, although all the Super 

AMOLED display panels follow G-R-G-B sub-pixel matrix design, 

the sub-pixel area ratio is slightly adjusted in the different models 

to accommodate the specific screen size and pixel density, leading 

to different power models.  

4.2 Dynamic Color Tuning 
Based on the color power measurement, we also found that: 

In the operation of an AMOLED screen on a smartphone, the actual 

displayed color and intensity may not be representative of the 

original raw RGB composition being sent to the screen as it may 

have been modified by a dynamic color tuning system in order to 

minimize power consumption. 

The previous single color evaluation is realized by adjusting the 

grey level of individual RGB color component while disabling the 

other display channels. However, when we measured the chromatic 

color’s power consumption in Galaxy S3, we found that it is not 

simply the summation of the individual RGB channels’ pixel power 

model, which was discussed in Section 3.1.  

We examined the power consumption of the AMOLED screen 

when its color changes from black to white. At every measured 

color composition, the same grey levels are applied to each sub-

pixel. As shown in Fig. 3, at a grey level of 100 and above, the 

theoretical power consumption that is calculated by the existing 

simple power model is 7% to 14% higher than the practical 

(measured) power consumption under full brightness and 9% to 

22% higher under half brightness. Similar phenomena were 

observed when displaying arbitrary chromatic colors, such as aqua, 

pink, purple, and etc.  

In practice, it is very difficult to measure the power consumption of 

an AMOLED screen in the 24-bit RGB color space and derive a 

generic power model. However, it is still possible to integrate a 

simplified model into the smartphone for AMOLED screen power 

optimization. In fact, in Samsung’s display system, an image 

processing engine called MDNIe is implemented by a designated 

chipset just in front of the graphic buffer to the display panel [13]. 

One application example of MDNIe is dynamic color tuning: the 

color composition being displayed on the screen can be adjusted by 

MDNIe to decrease power consumption while maintaining contrast 

levels. Hence, this system integrated dynamic color tuning has 

achieved power savings by color tuning effectively. 

5. POWER ANALYSIS ON DISPLAY 

RELATED SMARTPHONE APPLICATION 

5.1 Video Power Performance 
Although OLED technology has substantially improved the power 

efficiency of displays when compared to traditional LCD screens 

[14], the display panel is still one of the most power-consuming 

components in a smartphone [15]. Applications with dynamic 

display contents, e.g., streaming video player, are considered as 

being energy-hungry by previous research. 

However, in this work, we found that: 

 

Fig. 3. System chromatic color tone remapping. 
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In video stream player, the AMOLED screen’s power consumption 

is highly content dependent. The video decoding process 

contributes very marginal power consumption to the application. 

We examined a set of pure video streams without audio track and 

analyzed the composition of the application’s power consumption. 

We also conducted a breakdown of the screen’s power 

consumption over each functional component. To better represent 

typical display content differences, we followed YouTube’s video 

category and selected four types of video streams: music videos, 

sports, gameplay videos, and news reports. All of the video clips 

tested are selected and downloaded from YouTube. Most of these 

video streams are between 2-3 minutes in length and vary between 

1000 and 2500 frames. 

5.1.1 Power consumption with different display contents 
Because of the previously discussed color-dependent power model 

associated with AMOLED pixels, the display content directly 

determines the power consumption of an AMOLED screen. We 

evaluated 50 local video streams in each category on a Samsung 

Galaxy S3 in the field study. All of the video streams were encoded 

with a bit rate of 0.8 Mbps without a sound track. The refresh frame 

rates and display areas were configured differently to evaluate the 

system decoding performance. The overall power consumption of 

the device was recorded while at the same time monitoring the 

individual component power breakdown.  

The average power consumptions of each category of video are 

shown in Table 1. In full screen tests, videos are stretched to fill the 

entire screen, while in original size tests the videos are displayed 

on the screen in a letterbox with a resolution of 640x360 (the rest 

of the space on screen is black). The original size test is used to 

simulate the small display windows embedded in other 

application’s UI’s, e.g., Facebook and YouTube. 

Table 2 gives the contrast test results, which are measured by 

disabling the display output and allowing it to only display a black 

screen. In these tests, the power consumption of the device is only 

influenced by the video processing and other background 

operations. As expected, the contrast values are not dependent on 

the display content and are almost identical for different content 

samples with the same decoding configuration. By subtracting the 

power consumption in Table 2 from corresponding items in Table 

1, we can derive the power consumed by the display panel itself. 

Our results show that the most power consuming video content 

category is Sports. At 60fps and 30fps, the AMOLED screen 

consumes 29% and 32% of total smartphone power, respectively. 

Such high power consumption comes from the bright color tone and 

complex textures, which require high luminance and balanced color 

tuning. As a comparison, the least power consuming video content 

category is music video, which consumes only 15% and 17% of 

total smartphone power at 60fps and 30fps, respectively. 

Our results also show that the power consumption of the AMOLED 

screen decreases considerably when the resolution of the displayed 

video stream degrades: the ratio of the power consumed by the 

AMOLED screen to that of the entire smartphone decreases to 

between 7% and 15%. This indicates that while streaming an online 

video, AMOLED screens consume quite a small portion of the 

overall smartphone power, especially when compared to the 

potential power cost of network, which can require up to 2W. 

Moreover, we simulated approximately 200 video streams under 

each category to obtain the power consumption statistics of 

AMOLED screens. Our simulated results show that power 

consumption of the AMOLED screen is between 74.6mW and 

374.2mW  during full screen viewing and 37.2mW to 90.7mW 

during original size viewing. When compared to the contrast power 

consumption shown in Table 2, we propose that: 

The power consumption of an AMOLED screen is highly content 

dependent and may have relatively little impact on the overall 

power consumption of video streaming applications. 

5.1.2 Video stream decoding cost 
We also analyzed the power consumption of the video decoding 

process. The impact of display resolution, frame rate, and encoding 

bit rate are included in our analysis.  

Similar to the experiments presented in Section 4.1.1, two display 

resolutions of 1280x720 (full screen) and 640x360 are adopted in 

our tests. For the same display content, bit rate, and fps, the 

observed video decoding power consumption is almost identical 

when the stream is stretched to full screen from 640x360 and when 

it is viewed at original, letterboxed size. This means that the full 

screen pixel stretching in the display buffer consumes very little 

power for low resolutions. However, a large power rise (~ 100mW) 

is observed if the resolution increases from 640x360 to 1280x720, 

as shown in Table 2. This is due to the significant power required 

during the decoding process for high-resolution video. 

The largest power consumption difference occurs when the frame 

rate changes. The increase in the system power consumption at a 

fast frame rate comes from extra workload placed on the CPU. For 

example, the power consumption of the decoding process at 60 fps 

and a resolution of 640x360 is about 100mW higher than that of 

one at 30fps. When the resolution rises to 1280x720, the difference 

becomes even more pronounced at 200mW.  

We also tested 50 complex CG videos with the same content, time 

length, frame rate and resolution but different display quality, i.e., 

the bit rate. In our tested videos, the bit rate varies from 0.6 Mbps 

to 3.0Mbps. Although the videos share the same resolution, the 

 
Fig. 4 System chromatic color tone remapping 
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Table 1. Video stream power consumption (mW) 

Video 

1280x720 

(full screen) 

640x360 

 (full screen) 

640x360 

(original size) 

30fps 60fps 30fps 60fps 30fps 60fps 
Music 786.4 975.8 682.9 783.7 594.9 698.1 

Sports 960.4 1172.1 855.3 953.2 652.4 751.9 

Game 869.0 1061.2 786.5 889.1 628.2 730.8 

News 901.3 1124.3 802.7 915.7 612.3 725.5 

Table 2. Contrast power consumption (mW) 

Video  

1280x720 

(full screen) 

640x360 

 (full screen) 

640x360 

(original size) 

30fps 60fps 30fps 60fps 30fps 60fps 
Music 646.9 820.8 543.8 648.2 544.8 649.4 

Sports 646.8 823.2 542.5 644.3 548.7 649.0 

Game 644.3 820.6 543.5 643.7 548.0 648.8 

News 647.5 822.1 545.2 644.2 548.2 649.0 

 



low-quality ones include many mosaics and the corresponding 

video compression can be easier, which led to the lower bit rate. 

However, we found that the low bit rate and aggressive 

compression do not introduce any significant changes in power 

consumption: as is shown in the power track example in Fig. 4, 

there are almost no power differences between the different bit 

rates. Combined with our previous tests, this led us to the 

conclusion that higher display resolutions incur a much more 

significant increase in power consumption than an increased 

bitrate. Therefore, we propose that: 

Fast frame rate and high resolution introduce significant video 

decoding power consumption. However, when compared to the 

whole system, this power portion is not significant. 

5.2 Game Power Performance 
Due to the large volume of graphic computation on CPU/GPU and 

high display quality requirement, video games have become one of 

the most power-consuming application types in smartphones. We 

also measured the game power performance, based on the above 

observation, we propose that: 

Smartphone games consume a large amount of power. This power 

is mainly consumed by background computation while significant 

extra power may be required by user interaction. However, the 

AMOLED power consumption is generally small in comparison. 

We first measured the power consumptions of 20 of the most 

popular games from the Google Play store on the Galaxy S3 

platform. To enable easy interaction, most of the games are 

composed of big objectives with bright colors. This generates an 

increase in the power consumption of the AMOLED display. Our 

measurements show that the power consumption of the whole 

smartphone is generally within the range of between 1140mW and 

1750mW when user interaction is disabled.  

Some video games require user interaction that involves frequent 

sensor operations (e.g., tilt to move or touchscreen input). For 

instance, the power consumption of the device while playing Angry 

Birds and Fruit Ninja was increased to 1640mW and 2220mW, 

respectively, during normal operations. Compared to other 

applications like web browsing (with a power consumption in the 

range of 600mW to 1500mW) and video players, these video games 

require large amounts of power. The display power required with 

each of another 200 Android video games was simulated with the 

Galaxy S3 AMOLED power model. The simulations were made 

with official game trailer videos from YouTube. The average power 

consumption of the AMOLED was between 50.3mW~446.4mW.  

Finally, we analyzed power utilized by background computation 

while playing the open-source video game Quake 3 on the Android 

platform. Although it is an old game, it still offers reasonable game 

complexity and display quality on present smartphone platform. By 

modifying the code, we were able to obtain the power breakdown 

of the game over different hardware models. We chose five 

different smartphone models to cover the existing GPU/CPU 

configurations and display panel designs, as shown in Fig. 5. 

Although some models share the same chipset, e.g., the popular 

GPUs – PowerVR and Adreno (e.g., Galaxy Nexus uses PowerVR 

and ARM9; Galaxy S2 and S3 use Adreno and the CPU from 

Qualcomm), a variance in power performance is still observed. For 

example, the power supporting necessary background system 

services varies between 1245mW and 2140mW, which is much 

higher than the normal power level of other applications, such as 

streaming video players. The ratio between the power consumption 

of the AMOLED screen (typically 237mW to 363mW) and the 

whole smartphone reduces to between 15% and 22%. Fig. 5 also 

shows that CPU’s generally consume more power than GPU’s. In 

the Galaxy S and S2, the contribution of the CPU to total power 

consumption can be up to 40%. 

5.3 Camera Power Performance  
Besides streaming video players and video games, camera 

recording is another important display-related application on 

smartphones [17]. As has been studied before, camera recording 

incurs a surprisingly high power cost. However, the performance 

with the AMOLED display is not yet evaluated in this regard. In 

our experiments, we found that: 

The AMOLED display's power contribution is relatively small 

compared with that of the rest of the system during camera 

recording. Possible power reduction may be achieved by 

optimizing the internal data transformation. 

To arrive at this conclusion, we measured the power consumption 

of camera recording applications. Most of the measured 

smartphone cameras have a very high resolution of 6 to 8 

megapixels and are capable of recording HD videos at up to 1080p. 

Four test modes are included in our measurements: 1) contrast 

mode, where the camera works as normal but the AMOLED screen 

is disabled; 2) preview mode, where we only use camera for 

preview but not recording; 3) high quality recording, where the 

video resolution is 1280x720; and 4) low quality recording, where 

the video resolution is 640x360. To exclude the power variance 

 
Fig. 5 Power component breakdown example of video game.  
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Fig. 6 Galaxy S2 camera recording power histogram: (a) Preview mode; (b) Low quality recording; (c) Zone-in of the power 

histogram of high quality recording; (d) Zone-in of the power histogram of low quality recording. 



introduced by the AMOLED screen itself, the smartphone cameras 

record the same video test benches projected to a screen, including 

pure black, still picture, and the videos from typical categories. 

Except for the auto focus, other additional effects are disabled.  

A typical power histogram of Galaxy S2 smartphone in preview 

mode is shown in Fig. 6(a). Note that the power consumption of the 

AMOLED screen can be derived by subtracting the power utilized 

during contrast mode from the power consumption in preview 

mode. In recording modes, the power consumption of the 

smartphone increases, as shown in Fig. 6(b). The power variances 

among the different display contents are barely recognized and 

dominated by the video processing with some impacts from 

recording quality. For a 4-minute camera recording, the average 

power consumption is 1400mW and 1650mW with the low- or 

high-quality recording, respectively. Out of the total power 

consumption, the portion of the AMOLED screen accounts for 

170mW and 180mW in the low- or high-quality recording, 

respectively. Here the frame rate is 30fps. The power difference 

incurred by the resolution up-scaling is 250mW=1650mW– 

1400mW, which is quite small compared to the overall. 

However, the zone-ins of the power histograms of each recording 

mode in Fig. 6(c) and (d) show periodic spike patterns. The highest 

spikes in the low and high-quality recordings are around 1620mW 

and 2050mW, respectively. Also, the spike pattern during low-

quality is more regular than that in high-quality recording.  

We believe the difference of camera spike patterns in the two types 

of video recordings is introduced by the constraints on data 

communication. Since the camera buffer capacity is limited, the 

power consumption due to data transfer in the high-quality 

recording becomes more apparent when the frame size increases. 

We also tested the camera recording application with the 

resolutions of 3264x2448 and 320x240, as shown in Fig. 7. Distinct 

spike pattern difference are observed in these two tests. As 

expected, the spike pattern during the 3264x2448 resolution 

recording becomes prominent.  

The power breakdowns of the camera recording application on 

different smartphone models is shown in Fig. 8. The contributors 

to the total power consumption include encoding process, camera 

device, display and base power consumption. Since the display 

content captured from the real environment generally have a very 

low luminance, the power consumption of the AMOLED screen is 

only 200mW to 400mW. The power consumption of video 

encoding, which is greatly impacted by the internal data 

communication, varies significantly among the different models.  

Hence, with the tested results, we reached the conclusion that the 

power consumption of the AMOLED display only accounts for a 

small part of the device’s overall power consumption when 

recording video from the camera. 

6. CONCLUSION 

In this paper, we evaluated the power consumption of various 

display-related applications on smartphones. We first refined the 

power analysis of AMOLED display by considering design metrics 

such as sub-pixel area and matrix. We then conducted the 

AMOLED screen power analysis in the smartphone applications of 

a streaming video player, video game, and camera recorder. A wide 

selection of display content was tested during our experiments 

running on several representative Samsung smartphone platforms. 

We found that the AMOLED screen power model is heavily 

affected by sub-pixel matrix design while the power efficiency over 

the unit area is almost the same. We also found that the power 

consumption of the AMOLED screen while watching a video is 

much less than expected while decoding process power 

consumption is also not significant. In video games, the power 

consumption of the AMOLED screen varies significantly and 

power optimization should focus on the CPU side. Finally, camera 

recording incurs surprisingly high power consumption, which is 

constrained by the internal data transformation, with the AMOLED 

display accounting for only a small portion of overall power cost. 
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Fig. 7 Galaxy S2 camera recording power histogram:  

(a) 3264x2448; (b) 320x240. 
 

Fig. 8 Power component breakdown in camera recording. 
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ABSTRACT
Wi-Fi is the most prominent wireless network interface in current
smart devices. Due to its high power consumption, Power Sav-
ing Mode (PSM) schemes have been proposed to reduce power
consumption. We show how the current popular PSM schemes
implemented in nowadays smart devices are inefficient. In this
paper, we propose A2PSM: an audio channel assisted power saving
scheme for the Wi-Fi interface, which address the inefficiency of
the existing power saving schemes in smart devices. In this scheme,
we leverage the low power consumption of the audio interfaces
(mic/speaker) to reduce the wakeup events of the Wi-Fi interface
when it is in Power Saving Mode. In this paper, we develop a
small-scale prototype testbed on real smartphones to evaluate the
proposed A2PSM scheme. Experiments show that A2PSM could
save up to more than 25% more power than the existing schemes.
To the best of our knowledge, this is the first work to utilize the
audio channel in optimizing the power consumption of Wi-Fi net-
works.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

General Terms
Design, Algorithms, Measurement, Performance

Keywords
WiFi, Constant Awake Mode, Power Saving Mode, Audio Interface

1. INTRODUCTION
Wi-Fi is becoming the prominent network interface for data com-

munication in smart devices (e.g., smartphones) because of its low/free
cost, high throughput, relatively large range, and ubiquitous ac-
cessibility. However, the WiFi network still has several inefficien-
cies in terms of high energy consumption, unfairness between co-
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bear this notice and the full citation on the first page. To copy otherwise, to
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located nodes, and poor bandwidth utilization. For example, the
Wi-Fi transmitter has to finish the transmission of the packet even
in the case when the receiver flags the packet as corrupted at early
stage of the transmission. Another example is the overhead of the
low rate transmission of Wi-Fi control packets (RTS/CTS/ACK).

Addressing the above problems, we introduce the idea of en-
hancing data communication performance over Wi-Fi networks by
using the mic/speaker in smart devices as a parallel communication
channel. More specifically, we envision a novel communication
framework that utilizes the audio interface (i.e., mic/speaker) on
smart devices in developing more efficient Wi-Fi networks. Unlike
other interfaces in smart devices such as Bluetooth interface, audio
interface (i.e., hardware and software) in current commodity smart
devices are open and flexible that enable us to integrate it with Wi-
Fi interface at the networking lower layers (i.e., MAC and PHY
layers) to realize our vision.

In audio interface, we exploit the frequency band beyond the
human ear’s perception for audio communication. Nowadays, most
of, if not all, smart devices are both capable of generating and
discerning audio frequencies beyond the human perception. In this
paper we develop and evaluate, as a part of our framework, an
audio channel assisted Wi-Fi power saving mechanism for smart
devices. To the best of our knowledge, this is the first work to
utilize the audio channel in optimizing the power consumption of
Wi-Fi networks.

Figure 1: Monsoon Power monitoring result while audio interface
is receiving audio beacon tone, and wifi interface is receiving
beacon during CAM.



2. MOTIVATION AND CONTRIBUTION
Wi-Fi power management has an important impact on the bat-

tery endurability of smart devices. In this paper, we propose the
Audio Assisted Wi-Fi Power Saving Mode (A2PSM) scheme that
exploits both the audio interface hardware (mic/speaker) and the
existing Wi-Fi power saving mechanism in smart devices. Given
the wide adaptation of Wi-Fi in many types of smart devices and
the corresponding spread of peer-to-peer applications and services
(e.g., file sharing, multiplayer games, media streaming) between
smart devices in home and office setting, Wi-Fi Direct (SoftAP)
standard [3, 5] that allows direct communication between Wi-Fi
peers is gaining more interests and spread. Wi-Fi Direct and the
corresponding power saving mechanism works more like Wi-Fi
infrastructure mode in which one device (e.g. smartphone, TV, lap-
top) acts as an access point (AP) while the others as client stations
(STAs). Therefore and without loss of generality, we focus in this
paper on using A2PSM in the Wi-Fi infrastructure mode that is
equally applicable to Wi-Fi Direct.

Most smart devices have two main power management modes
for Wi-Fi Infrastructure mode; Constant Awake Mode (CAM) and
Power Saving Mode (PSM). In CAM mode, the device’s Wi-Fi
interface remains awake all the time while in PSM mode device’s
Wi-Fi interface awakes periodically to receive beacons from the ac-
cess point (AP). Because of the importance of power management,
several PSM schemes have been applied. The most common used
PSM scheme in smart devices is Static PSM (SPSM). In SPSM, the
sleeping duration is fixed and set at the association process between
the device (STA) and the access point (AP). Since a STA needs
to wake up periodically even if there is no data to exchange with
the AP, SPSM is not optimal. In our proposed A2PSM, we try to
mimic the optimal situation by using the audio interface as a paral-
lel channel to the Wi-Fi interface in order to allow the STAÕs Wi-Fi
interface sleep as long as there is no data to exchange between the
AP and the STA.

To understand the power consumption of both the audio and
Wi-Fi interfaces, we conducted a simple experiment with the use
of Monsoon power monitoring tool [2]. In the experiment, the
audio interface and the Wi-Fi interface receive an audio beacon
(i.e., tone) and a Wi-Fi beacon respectively in a periodic pattern.
Clearly, Figure 1 shows that the power consumption of the Wi-
Fi interface is three times more than the audio interface. Such
observation motivated us to consider a new mechanism to utilize
the audio interface in enhancing the current PSM mechanism in the
smart device to optimize its power consumption.

In the following, we summarize the contributions of this paper:

1. Introduce the idea of using the audio communication channel
to assist the Wi-Fi PSM mechanism. This paper takes the first
step to explore the feasibility and the future direction of our
framework that utilizes the audio interface as an additional
interface for the Wi-Fi interface.

2. Design the A2PSM scheme for smart devices. We describe in
details about the design challenges of incorporating the audio
channel with Wi-Fi.

3. Implement the A2PSM scheme on commodity smart device.
We Implement our prototype of A2PSM on Nokia N900 phones.

4. Evaluate the A2PSM scheme in real environments. We evalu-
ate the power efficiency of our implemented prototype using
Monsoon power monitoring tool. We also identify several
steps for future research.

AP Wi-Fi 
Interface

STA Wi-Fi 
Interface in
PSM

Standard PS mechanism 
Beacon TIM=1 

  

Wi-Fi Interface 
awake to poll Data

Wi-Fi Interface 
is sleep

Wi-Fi Interface awake to 
receive beacon

  

WiFi Beacon

Receiving WiFi 
Beacon 

PS-Poll

ACK

Data

WiFi Beacon
DTIM

DTIM period  3

Figure 2: Standard PSM scheme for Wi-Fi infrastructure networks

3. BACKGROUND: PSM OVERVIEW
In standard PSM, the STA’s Wi-Fi interface awake periodically

to receive beacons from the AP. A beacon message from the AP
with the STA’s TIM bit set indicates that AP has buffered data for
the STA. Consequently, the STA’s Wi-Fi interface switches from
PSM to CAM and poll the data from AP. In case of a broadcast
frame, AP transmits a special kind of beacon message; DTIM, peri-
odically every certain beacon intervals. Figure 2 gives an overview
of the standard PSM scheme for Wi-Fi infrastructure networks.
Unlike PSM, A2PSM scheme keeps the STAÕs Wi-Fi interface in
sleep until there is a data to exchange with the AP and the STA
needs to switches from PSM to CAM. While the STA is in sleep,
the communication between the AP and the STA happens thru the
audio interface. In our schema, we assume both the AP and the STA
have an audio interface (mic/speaker). In section 5 we describe
details of our A2PSM scheme.
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Figure 3: Preliminary Audio-WiFi Framework Architecture.



4. AUDIO-WIFI ARCHITECTURE
Figure 3 shows the preliminary architecture of our Audio-WiFi

framework vision. The audio interface in this framework has two
layers: 1) A-PHY layer: responsible for signal processing and
signal transmission/ reception using speaker/microphone hardware.
2) A-MAC layer: responsible for sending/receiving audio signals
over audio channels. In this framework, Wi-Fi MAC and upper
layers (e.g., TCP/IP and applications) utilize the audio interface to
send control frames (e.g. beacon frame) using the A-MAC layer.
In a similar way, A-MAC could receive control frames over audio
channel and send it to Wi-Fi MAC and upper layers. In addition,
the framework defines the cross-layer interactions (e.g. control
path) between the different layers and the audio interface to fa-
cilitate the data flows between the different components. In the
implementation section we describe, how we use this architecture
to implement our prototype of the proposed A2PSM scheme in
Linux-based Nokia N900 smartphones.

5. A2PSM DESIGN
The scope of this paper is to design and implement the A2PSM

scheme for unicast transmissions in Wi-Fi infrastructure networks.
We will discuss the broadcast transmissions later in Section 9. In
designing A2PSM scheme, we need to fulfill the following require-
ments: (1) The use of the audio interface with the PSM should
cost less energy than the traditional Wi-Fi interface. (2) The audio
interface needs to generate and receive the audio beacon within the
same time limit of the Wi-Fi beacon, in order not to increase the
data transmission latency. In this section, we describe in details the
design of A2PSM scheme that fulfill the above requirements

5.1 Audio Beacon
In A2PSM, in addition to the Wi-Fi beacons, the AP needs to

generate audio beacons synchronized with the Wi-Fi beacons. The
audio beacon is an audio signal that has one or more high frequency
(≥ 18kHz) sinusoidal signal components. In 802.11 standards, the
AP assigns a unique Association Id (AID) to each STA during the
association process. In A2PSM, similarly, each STA is assigned
a unique audio frequency corresponding to its unique AID. Figure
4 shows the overall power saving mechanism of the A2PSM. As
shown, when the AP has a buffered data for a STA or more, the
AP includes in the audio beacon, transmitted along with the Wi-
Fi beacon, the frequency components that are corresponding to
these STAs. This audio beacon structure mimics the Wi-Fi beacon
with TIM bits. In A2PSM, while the STA is in PSM, the audio
interface awakes periodically to capture the audio beacons from the
AP. When a STA receives an audio beacon with including its audio
frequency, it puts its audio interface to sleep and then awakes the
Wi-Fi interface to poll its buffered data from the AP. Note that, the
duration of the awake periods of the audio interface should be short
enough to capture the audio beacon while minimizing the energy
consumption. In our implementation, we set this period to 20ms,
which is the average duration of the Wi-Fi interface being awake to
receive the Wi-Fi beacon.

5.2 Relative position
In Figure 4, there is a time difference between the generation

and the reception of the audio beacon tone by the AP and the STA
respectively. This time difference is due to the slow propagation
speed of the audio. The observed time difference depends on the
relative distance between the STA and the AP. The STA and the AP

can use one of the existing ranging schemes such as Beepbeep [10]
to estimate the relative distance between them. Knowing the rel-
ative distance to the AP, the STA could calculate the exact time
to awake its audio interface just right before the reception of the
audio beacon. Therefore, STAs with different distances to the AP
turn their audio interfaces at different times.For example, in Figure
5, while STA2 has not received the audio beacon yet, STA1 started
to receive the audio beacon.

To satisfy our second design requirement, the farthest STA from
the AP needs to receive the audio beacon within the typical Wi-Fi
beacon interval time (e.g. 100ms). Such requirement is necessary
to minimize the data latency between STAs and the AP. Devices in
Wi-Fi Direct scenarios are in close proximity (e.g. 5-10 meter) to
each other. For the indoor Wi-Fi networks (e.g., home and office
settings), the typical average Wi-Fi range is within 30 meter [6].
Given the speed of sound in air, the farthest STA would start re-
ceiving the audio beacon within 60ms after its transmission for the
30meter range. This allows the farthest STA to capture the audio
beacon within the typical Wi-Fi beacon interval (e.g., 100ms). This
requirement is more challenging in case of broadcast transmissions.
We describe this challenge in section 9.

AP's Audio 
Interface

STA1 Audio 
Interface

STA 2 Audio 
Interface

Beacon Interval Time

Figure 5: Audio beacon communication between two STAs and
AP. In the scenario, STA2 is further away from the AP compare to
STA1.

6. IMPLEMENTATION
We have implemented our prototype of A2PSM on two Nokia

N900 smartphones. We use one phone as an AP and the other as a
STA. In the prototype, we implement the followings: (1) The audio
interface for both the STA and the AP. (2) The interaction between
the Wi-Fi Interface and the audio Interface for both the STA and
the AP.

6.1 Audio Interface
In the audio interface, we implement a simple prototype of the

A-PHY layer. Figure 6 shows the original components of the Linux
sound driver (e.g. ALSA) and the Wi-Fi driver(e.g. wl12xx) (shown
as dotted boxes) in Linux-based smart devices (e.g. Android, Memo
etc.). Our additional A-PHY and A-MAC modules of the audio
interface are shown in the figure as shaded solid boxes. The A-
PHY of the audio interface is responsible to transmit/receive the
audio beacon. In our implementation, the A-PHY module in the
AP only generates the audio beacon synchronized with the Wi-Fi
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Figure 6: Implementation architecture of A2PSM scheme.

beacon transmission. On the other hand, the A-PHY module in
the STA is responsible to capture the audio beacon and to detect
whether its corresponding frequency component is included in the
beacon. Initially, the A-PHY module in the STA applies a high pass
filter to extract only the high frequency component of the captured
audio signal. Followed by the filtering, the A-PHY module uses
cross-correlation technique to detect whether the captured signal
contains a certain frequency component corresponding to the STA’s
AID. Given that the background noises have very minimal effects
in the high frequency range (18kHz-21kHz), it is easy to detect
certain frequency components within the captured beacon with high
accuracy.

The A-MAC module in the AP interacts with the A-PHY module
to transmit periodic audio beacons aligned with the Wi-Fi bea-
cons. In addition, the A-MAC module is responsible to define the
frequency components in the audio beacon based on the AIDs of
the STAs those have buffered data at the AP. Therefore, the A-
MAC module in AP needs to communicate with the Wi-Fi MAC
to identify those STAs. In the STA, the A-MAC module notifies
the Wi-Fi MAC only when it has data to poll from the AP.

One main question we need to address in our implementation is:
how long we need to keep the audio interface awake in the STA to
capture the audio beacon properly? Our objective in the implemen-
tation is to minimize the duration needed by the audio interface
in the STA to stay awake to capture the audio beacon. Since the
duration of capturing an audio beacon at the STA is tightly coupled
with the duration of the generated audio signal at the AP, we studied
how audio signal is generated. In general, the generation of an
audio signal depends on three main parameters of the sound driver;
sampling period, buffer size and period size [8]. In our implemen-
tation, we tune these parameters to limit the duration of the audio
beacon signal to 10ms, which is large enough to be detected at
the STA side. Therefore, the audio interface at the STA needs to
keep awake for at least 10ms in order to capture the audio beacon
from the AP. This duration period is identical to the period the Wi-
Fi interface stays awake in the SPSM scheme to receive a Wi-Fi
beacon.

6.2 Audio-WiFi Interaction
Another important issue we have to address in our implementa-

tion is to minimize the miss-alignment between the transmissions
time of the audio beacons and the WiFi beacons at the AP. In doing
this, fast interaction between the audio and the Wi-Fi interfaces is
needed to guarantee lower miss-alignment between the audio and
Wi-Fi beacons. In our implementation, we use a simple shared
memory to facilitate the interaction between the two interfaces thru
sharing certain information that control the operation of the inter-
faces. For example, the Wi-Fi driver uses the shared memory to
signal the audio driver about a Wi-Fi beacon transmission. Simi-
larly, the Wi-Fi drive uses the shared memory to inform the audio
driver about changing its PSM mode.

7. EXPERIMENT AND EVALUATION
In this section we evaluate the performance of our proposed A2PSM

scheme by answering the following two questions: (1) How much
energy is saved by the A2PSM scheme compared to the standard
power saving mechanism under different traffic loads? and (2)
Does the A2PSM has any effect on the network throughput?



Figure 7: Monsoon Power Monitoring observation of A2PSM schema while STA is receiving ping message during PSM.

In our experiments, we use two Nokia N900 phones running our
implemented A2PSM scheme in which one phone act as a STA
and the other as an AP. We connect the STA with the Monsoon
Solution Power Monitor [2] to measure its energy consumption. We
conducted a simple experiment to validate the proper implementa-
tion of the A2PSM. In this experiment, we send a periodic ping
command through the AP to the STA. Figure 7 shows the power
consumption that is corresponding to the activities of the audio and
Wi-Fi interfaces in the STA in response to the ping commands. This
plot validates the proper operation of A2PSM scheme in receiving
the audio beacon and in switching between the audio interface and
the Wi-Fi interface.

To evaluate the energy efficiency of A2PSM scheme, we run
iperf [1] tool on both the STA and the AP in server mode and
client mode respectively. We send UDP data from iperf client to the
iperf server under different traffic loads for duration of 20 seconds.
We replicate this experiment 10 times for each traffic load setting.
During the experiment, we fix the distance between the STA and
the AP to 3 meter. We compare the power consumption of the
smartphone under two different power saving schemes: A2PSM
and SPSM. During the power consumption measurement, we turn
off all the other radio interfaces as well as the display screen of
the smartphone. Moreover, we use the same settings of the smart-
phones under both power saving schemes.
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SPSM schemes under different traffic loads.

Figure 8 shows the power consumption for both SPSM and A2PSM
schemes under different traffic loads. Each point in the figure is the
measured power consumption of the STA averaged over 10 exper-
iment runs for the same traffic load. As shown, our implemented
A2PSM prototype could save up to more than 25% more power
than the existing SPSM scheme. We observe that A2PSM saves
more energy at lower traffic loads. For example, A2PSM saves
almost 25% more power under a traffic load of 100 KBytes/sec,
while it saves only 5% more power under 3200 KBytes/sec load.
Figure 9 shows the expected battery life time of the smartphone for
both power saving schemes under different traffic loads.
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Figure 9: Expected battery life time comparison between A2PSM
and SPSM under different traffic loads.

In order to evaluate whether A2PSM scheme has any effect on
the network performance, we conduct similar experiment to mea-
sure the network throughput. After repeating the experiment sev-
eral times under different traffic loads, we found out that there is
no significant difference in network throughput under both A2PSM
and SPSM schemes. Such result validates that our A2PSM scheme
has no effect on the network performance.

8. RELATED WORK
Number of prior solutions have been proposed to reduce the

energy consumption of the wireless network in smart devices. In



this section, we focus on only those that are related to multiple
radio interfaces. Using multiple radio interfaces is a popular idea
in optimizing or enhancing the overall performance of the wireless
communication [12, 4].

Recently, large focus has been given to improving the power
consumption of wireless communication in smart devices. Several
proposed solutions focused on utilizing the Bluetooth interface for
improvising the performance of the Wi-Fi [11, 4]. For example,
CoolSpots [11] enables automatic switching mechanism between
multiple wireless interfaces (i.e., WiFi and Bluetooth) of the mo-
bile device in order to extend the battery lifetime. The Blue-Fi
system [4] utilizes the nearby bluetooth contact-patterns and cell-
tower information to predict the availability of the Wi-Fi connec-
tion. Thus, it allows the device to turn off the Wi-Fi interface and
minimize the number of idle state periods and and the number of
neighbor discovery scans. However, one of the major challenges to
be addressed in using Bluetooth with Wi-Fi is the co-existence [7].

Researchers have proposed to use other wireless network inter-
face such as ZigBee as a parallel communication to enhance the
energy efficiency of the Wi-Fi network, such as Wi-Zi Cloud [9].
Typically, current smart devices do not support ZigBee interface.
Authors in [13] propose to switch and use a separate low-power
control channel in addition to the main high-power data channel.
When the device is inactive, it turns off the high-power channel and
uses the low-power control channel to send control messages (i.e.,
wakeup message). In this scheme, authors use special hardware
as a separate low-power interface in addition to the typical Wi-
Fi interface. To the best of our knowledge, A2PSM is the first
of its kind that utilizes the audio interface to reduce the power
consumption of Wi-Fi interface in smart devices.

9. CHALLENGES AND FUTURE WORK
Broadcast Frame: In case of receiving unicast transmissions,

data are polled by STAs from the AP. On contrary, data are pushed
by the AP for the broadcast transmissions. This scenario imposes
additional challenges in designing A2PSM for broadcast transmis-
sions. Since different STAs using A2PSM scheme will receive
the audio beacon at different times as discussed in section 5.2, the
AP in broadcast transmissions needs to wait until the farthest STA
receives the audio beacon before sending the broadcast data. As
a result, STAs that are nearer to the AP will have to wait longer
time before receiving the broadcast data. As a consequence, a STA
closer to the AP consumes more power in receiving a broadcast
data. In future, we plan to address the broadcast transmissions
challenge within A2PSM.

Multiple STAs: In this paper we have just implemented a small
scale prototype testbed of our A2PSM scheme for one AP and
one STA. In future work, we plan to develop a complete A2PSM
scheme that supports multiple STAs.

In conclusion, this paper proposes a novel power saving scheme
that utilizes both the audio and the Wi-Fi interfaces in smart de-
vices. In the paper, we designed, implemented and evaluated a
preliminary version of A2PSM scheme on real testbed. Results
are promising and motivate us to continue developing the complete
A2PSM scheme for smart devices.
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ABSTRACT
Achieving perfect power proportionality in current mobile devices
is not enough to prevent users from running out of battery. Given
a limited power budget, we need to control active power usage, and
there needs to be a prioritization of activities. In the late 1990s, Flinn
and Satyanarayanan showed signi�cant energy savings using a con-
cept of data �delity to drivemobile application adaptation, informed
by the battery lifetime desired by the user and the OS’s evaluation
of energy supply and demand. In this paper we revisit and expand
this approach, recognizing thatwith current hardware there are even
higher potential savings, and that increased diversity in applications,
devices, and user preferences requires a new way to involve the user
to maximize their utility. We propose ApplicationModes, a new ab-
straction and a narrow interface between applications and the OS
that allows for a separation of concerns between the application, the
OS, and the user. Application Modes are well suited to eliciting user
preferences when these depend on multiple dimensions, and can
vary between users, time, and context. Applications declare modes
– bundles of functionality for graceful degradation when resource-
limited.�eOS uses these modes as the granularity at which to pro-
�le and predict energy usage, without having to understand their se-
mantics. It can combine these predictionswith application-provided
descriptions, exposing to the user only the high-level trade-o�s that
they need to know about, between battery lifetime and functionality.

1. INTRODUCTION
Battery life has been a fundamental limitation in mobile devices

for as long as they have existed, despite a vast body of literature
on power management extending back almost two decades (§6). In
fact, increasingly demanding applications greatly exceed the aver-
age power draw that would be required for batteries to last through
a typical charging period [9, 25].
�ere is a wide spectrum of proposed solutions for power man-

agement. A �rst class of solutions deals with the management of
idle-resource power, by automatically switching hardware compo-
nents to low-power states when not in use. �ese include timeout
policies for hibernation, suspending disks, displays and radios; and
CPU voltage and frequency scaling. �e outcome, if these are per-
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fect, is an energy-proportional system [5]. Althoughnecessary, these
are not su�cient to solve the increasing energy-de�cit problem, be-
cause they have no e�ect when there is active demand for resources.
To reduce the active demand, there must be a prioritization of

functionality. In the late 1990s, Ellis [8, 27] recognized that the of-
fered workload has to be changed by user-driven prioritization and
lifetime goals, and Flinn and Satyanarayanan established, with the
Odyssey system, that application adaptation can provide substan-
tial energy gains [10, 16]. In Odyssey, applications automatically and
dynamically change their behavior to limit their energy consump-
tion and achieve user-speci�ed battery lifetime, guided by the op-
erating system. �e adaptation involves a trade-o� between energy
use and application data quality, which they called �delity. Fidelity
is application-speci�c and opaque to the OS. �e role of the OS is
to direct the adaptation based on its evaluation of the supply and
demand of energy, and their relation to the expected battery dura-
tion.When theOS detects the lifetime goal as unachievable, it issues
upcalls to applications so they reduce their �delity. �e user inputs
two pieces of information: the desired lifetime, and a prioritization
of applications to order their adaptation, whereas application devel-
opers are responsible for implementing di�erent �delity levels.
Flinn and Satyanarayananwere the �rst to simultaneously involve

the OS, the applications, and the user in power management, and
many factors in today’s environment make it opportune to revisit
and extend their approach, which we do in this paper. Due to a
combination of more complex applications, multiple devices, and
a diverse user base, in some cases there is no single �delity metric
that is common to all users in all contexts, making automated ap-
proaches to adapt some applications ine�ective. Furthermore, given
advances in hardware and in lower-level so�ware (e.g., ACPI), de-
vices are much more e�cient when idle, making higher-level ap-
proaches that reduce active demand much more e�ective now than
a decade ago.
In [10], as in [12], a fundamental assumption is that there is a

well-de�ned trade-o� between�delity (orQoS) and energy use.�is
means that an application developer knows the app con�gurations
that lie in the Pareto frontier of this trade-o�, enabling an automated
algorithm to decide the state based on the available energy.
Even though this still holds for many applications, this is not al-

ways true. As we show in §2, two users with di�erent preferences
can have very di�erent trade-o�s between energy usage and utility
from an application. �e key observation is that in these cases, au-
tomated adaptation fails, and the runtime systemmust elicit prefer-
ences from the user. �e main challenge is how to involve the user
at the right time and at the right level. She should only worry about
tangible aspects of the device operation, such as lifetime and func-
tionality, and not be concerned with how these are implemented or
achieved.



In this paper we propose Application Modes (§4), an interface
between applications and the OS that eases this communication.
Rather than exposing ametric, applications declare to the OS one or
more modes, which comprise reductions of functionality with pre-
sumed power savings. Modes carry a human-readable description
of the resulting functionality, and the promise of switching when
requested by the OS. Similarly to previous works [10, 2], we assume
that the OS can predict how long the device will last with the appli-
cation in each mode, and then request its change when appropriate.
However, recognizing that di�erent modes may have di�erent util-
ities for di�erent users, the decision of when to switch modes in-
volves the user when necessary, by combining the description pro-
vided by the application with the predictions of change in lifetime
provided by the OS.

2. MOTIVATION
In this section we use power measurements with two common

smartphone applications — a navigation and a video-recording ap-
plication — to illustrate two main points. First, we con�rm and ex-
tend earlier �ndings by Flinn and Satyanarayanan [10] demonstrat-
ing how changes in application behavior can substantially a�ect en-
ergy consumption. Second, using the video-recording application,
we show that di�erent users can have very di�erent Pareto frontiers
in the utility-energy trade-o�, making globally automated decisions
ine�ective to maximize utility.

Wemeasure the power draw of running these applications in very
di�erent modes, or bundles of settings. We did our measurements
on a Samsung Galaxy Nexus running CyanogenMod ICS 4.1.0. We
measured the power draw of the entire phone connecting a Mon-
soon power monitor to the smartphone battery. To discriminate the
energy consumed due to application, we �rst measured the energy
consumed by the phone in the idle state, i.e., not running any ap-
plications apart from the base system, and established two baselines
with the screen on and o�.We kept the screen brightness to the same
level for all runs where the screen was on. For navigation, we down-
loaded data using the 3G data connection when needed, and for the
recording application, we used the WiFi network for data upload.

NavigationSystem Turn-by-turnnavigation exercises several hard-
ware resources, including the CPU, GPU, audio, networking, and
GPS. It is used in sometimes critical situations, when there is little
battery le� and the user is in need of orientation to arrive at her
destination (and a charging opportunity). �ere are also interest-
ing trade-o�s in functionality, utility, and energy use, depending on
which subset of resources the application uses.

We demonstrate potential savings from running Osmand1 and
Navfree2 , two turn-by-turn navigation applications for Android de-
vices with online/o�ine features, and modifying their settings. We
consider �ve modes, listed in Table 1, from selected parameters for
the screen and audio outputs, map-data source and routing. �ese
settings are not transparent to the user, and make speci�c trade-o�s
between accuracy and resource usage for a given route. Notable dif-
ferences between settings include the use of previously downloaded
vector maps instead of online tile data, disabling the display and us-
ing only audio for directions, and downloading directions for the
user to write down! We compare the power draw of calculating and
outputting the directions for a �xed, four-mile route.

Figure 1 shows, for each mode, the distribution of instantaneous
power-draw samples from the device over the entire experiment.
�e “Full Features” mode yields a richer trajectory, including extra

1http://osmand.net
2http://www.navmii.com
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Figure 1: Power draw distributions for the navigation app in di�erent out-
put/routing settings (cf. Table 1). �e vertical bars show the maximum and
minimum power draw, and the boxes the 1st and 3rd quartiles, with the me-
dian and average indicated.�e number to the le� of each bar shows the im-
provement in battery usage relative to the “Full Features” scenario. Greater
energy savings can be achieved by reducing the output quality.
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Figure 2: Power draw of di�erent modes for the media-streaming app (cf.
Table 2).

information like points of interest (POI), at the expense of a larger
power pro�le. As we reduce the number of enabled settings we can
see a drop in energy expenditure along with a decrease in the qual-
ity of routing information. �e “Written Directions” mode draws
on average more than 14× less power than “Full Features”. �e for-
mer’s high variance stems from brie�y using the screen and radio
to search for directions; yet, its average power draw is much smaller
than its counterparts. In exchange, the user has to take notes of the
route before the trip and use them as the only source of information
to reach the destination3 . �e potential savings are very signi�cant,
provided the user accepts the decrease in quality. In this example,
like the ones in previous works, there is a total order in the utility
of the modes that is likely agreeable to all users. As such, two alter-
natives for adaptation can work: as in Odyssey, if the OS knows the
user’s expected lifetime, the OS can request an increase or decrease
in �delity. Alternatively, we can use Application Modes to expose to
users the functionality and expected lifetime of the device in each
mode, for them to choose.

3�is mode was motivated by one of the authors actually having
had to do this one time!



Mode Name Display Settings Routing Settings Program Used
Full Online map tiles and overlays (Mapnik), POIs, compass, polygons CloudMade routing (online) Osmand

Light Screen O�ine vector maps, no POIs, no compass, polygons, day mode (light screen) Osmand routing (o�ine) Osmand
Dark Screen O�ine vector maps, no POIs, no compass, no polygons, night mode (dark screen) Osmand routing (o�ine) Osmand
Audio Only Screen o� Navfree routing (o�ine) Navfree

Written Directions Screen on for browser search, o� a�erwards, no audio Google Maps (online) Browser
Table 1: Alternatives to navigating a four-mile course for the navigation app. Upper modes yield higher-quality routes in exchange for greater resource usage.

Mode Name Encoding Settings File size (MB) Stream transmission? Program Used
HD Streaming 720p video, hi-def audio 158.60 Live streaming via RTSP LiveStream
HD Recording 720p video, hi-def audio 290.1 Upload when recharging SpyCam
SD Streaming 480p video, med-def audio 47.16 Live streaming via RTSP LiveStream
SD Recording 480p video, med-def audio 183.4 Upload when recharging SpyCam

Audio Recording Audio only, screen o� 0.58 Upload when recharging Sound Recorder

Table 2: Functionality alternatives for the media-streaming app, varying encoding quality and immediacy.
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all users.

Media Streaming Our second example is an audio and video stream-
ing application which, as navigation, is widely used, leverages di�er-
ent hardware resources, and has interesting trade-o�s.

We consider the power draw of capturing and transmitting a �ve-
minute video feed using three similar applications. We performed
measurements on di�erent settings of the LiveStream, SpyCam4 and
MIUI Sound Recorder5 apps using the aforementioned setup. We
modify their functionality by selecting parameters for the video and
audio encoding and for when to upload the captured media. We
consider �ve basic sets of settings (Table 2), choosing whether to
stream or record for later upload, and whether to encode video in
high de�nition, standard de�nition, or audio only. Once again, these
settings are not transparent to the user, and make speci�c trade-o�s
between quality and timeliness of the uploaded media.

Figure 2 shows the power draw of eachmode.�e “Audio Record-
ing”modedraws on average over 15× less power than the “HDStream-
ing” mode. “Audio Recording” generates the least number of bytes,
does not use the screen, camera, or video-encoding hardware, and
does not include the transmission energy, as this is done only when
the device is recharging.
Figure 3 shows the samemodes, with a numerical utility for hypo-

thetical users (which could even be the same user in di�erent con-
texts). User ‘A’ is interested in obtaining high-quality video, whereas
user ‘B’ values immediacy.�e graph shows that the Pareto frontiers
for the two users are very di�erent, and that there is no consistent
ordering of the modes, particularly between HD recording and SD
streaming. �is example highlights that neither the OS nor the ap-
plication can know a priori the utility of the modes for each user.
In this case, and in general when there are multiple dimensions that
di�erent users value di�erently, the automatic selection of a mode
breaks down.

4http://dooblou.blogspot.com
5http://github.com/MiCode/SoundRecorder

3. THE USER NEEDS TO DRIVE
In this sectionwe argue why the user, the applications, and theOS

must all be involved in limiting the active demand of mobile devices
to achieve maximum value out of a limited energy budget.
1.�e OS cannot always know the resource priorities of all ap-

plications. If an application is consuming too much energy, the OS
could limit the resources o�ered to it, such as CPU time, bandwidth,
or access to precise location. Robust applications should sustain such
reductions and adapt. However, such arbitrary reductions can be
frustrating to the user, as the value of di�erent functionalities to her
may be hard to predict.�is is exacerbatedwhen there are alternative
reductions. If the OS decides that a videoconferencing application
is spending too much energy, it could reduce its CPU or network
allocation, but cannot know which will lead to a more acceptable
degradation to the user.
2.Applications cannot always know the functionality priorities

of the end-user.Applications are in a better position than the OS to
make such decisions, but they may still not know the user’s pref-
erences. As the video example in the previous section highlights,
there may be no total ordering of the modes in an application, so
that the application developer cannot determine the modes in the
Pareto frontier for a speci�c user. In this case, it is only the user who
can determine the relative value of the alternatives, as just knowing
the user’s desired battery lifetime is not su�cient to maximize the
utility automatically.
3. Users should choose at the right level, trading o� functional-

ity versus lifetime. Although many existing systems could involve
the user, most require too much knowledge at the wrong level of
abstraction. �e user should only have to know about high-level
functionality and device lifetime, and not be concerned about which
components of the phone even exist. A user wanting her battery to
survive a 12-hour �ight should not need to understand or even spec-
ify the screen brightness, CPU frequency, scheduling algorithm, or
theWiFi data rate of her smartphone to ful�ll her needs.�e phone
should hide these trade-o�s from the user whenever possible. Pop-
ular solutions for end-user energy management are based on com-
ponents rather than functionality, requiring the user to know the
resource implications of turning o� 3G, GPS, synchronization, or
Bluetooth. Frameworks likeCinder [19], Koala [21], andChameleon [14]
have mechanisms to limit resource usage per application, but su�er
from the same problem – they assume mobile users are likely to be-
come system administrators or programmers of their devices. On
the other hand, other frameworks limit themselves to a single knob,
such as lifetime [10, 27] or a preference between performance and
duration [1], but as we show, in some cases, this is not enough to
maximize utility.



Figure 4: Application Modes abstract complex settings by a single,
functionality-centered concept, and are common in diverse settings: (a) Air-
plane mode on phones, (b) Incognito mode in Chrome, (c) scene modes on
a camera, and (d) driving modes on a semi-automatic transmission.

�e only remaining question is why the OS should be involved
at all, since applications could elicit users’ preferences directly. �e
challenge here lies in the decision of when apps would o�er these
choices, as this requires knowledge of current and future energy
availability. �is functionality may require device-speci�c model-
ing, and should more naturally reside in the OS [6]. Requiring it in
each app entails duplicated developer e�ort, and leads at best to poor
or inconsistent results.�eOS, on the other hand, is in the right po-
sition to provide an energy context to all apps, including pro�ling
and predictions of energy usage and lifetime.

4. APPLICATION MODES
To address the concerns in the previous sections, we have im-

plemented a new abstraction named Application Modes, bundles of
functionality declared by applications to ease the separation of con-
cerns required between applications, the user, and the OS for e�ec-
tive resource management. We borrow the concept of modes from
several commonplace settings (see Figure 4), where they represent
complex settings abstracted by a single functionality-centered, easy-
to-understand concept. Application Modes resemble Chroma [2]
in that very little application knowledge is exposed. Di�erent from
Chroma, users are not oblivious to the decisionsmade by the system,
but actually have an active voice in making the decisions that a�ect
their experience. Application Modes are particularly well suited to
cases where there aremultiple dimensions involved in the users’ im-
plicit preference function, with no total order among them, similarly
to the di�erent shooting modes on a camera, for example.

Power savings are achieved through graceful degradation. Devel-
opers create di�erent modes for an application by selecting sets of
functionalities that entail di�erent application behaviors, as perceived
by the user, in exchange for reduced energy consumption. Graceful
degradation is achieved through variousways: di�erent settings, dif-
ferent algorithms [20], even di�erent programs.
�e central part of the abstraction is a narrow interface between

applications and the OS (see Listing 1). When opened for the �rst
time, applications implementing this interface via a shared library
declare to the OS their supported modes using a label and a user-
friendly description of how each mode a�ects the user experience
(the registerModes() system call). An OS-listening component in-
tercepts this systemcall and saves in its database themetadata passed
as arguments by the application, along with a unique identi�er for
each mode, and the currently selected mode. �e latter is neces-
sary to automatically restore the behavior of applications once they
are reopened. Applications supporting our abstraction promise to
switch to a given mode when instructed by the OS, whereas appli-
cations oblivious to this new API are not a�ected. Table 3 lists a few
mode examples for di�erent apps.

registerModes(List<ModeData>); // system call
setMode(ModeId); // callback

Listing 1: API for data exchange between applications and the OS.

Application Modes represent a meaningful granularity at which
the OS can do pro�ling of energy consumption, and make lifetime

predictions for each one.Applications keep control ofwhat resources
to reduce in order to save power, but leave the decision of when to
do so to the OS, which has detailed knowledge of the energy context
of the entire device, and to the user, who can prioritize application
functions based on her goals.
Battery lifetime and high-level functionality, metrics understand-

able by both users and developers, are used to guide adaptation. In
one possible scenario, theOSnotices that, at the current power draw,
her phonewill exhaust the battery before the next expected recharge.
�e OS then presents to the user a list of running apps, ordered
by power draw. When the user selects an app from the list, the OS
presents an interface similar to that in Figure 5, on which the user
selects a di�erent mode for the app, informed by its description (i.e.,
functionality) and expected impact on battery lifetime. In another
usage scenario, the user is presented with a noti�cation of Applica-
tion Modes support when opening a new program that implements
the API. A�er clicking the noti�cation, an interface similar to Fig-
ure 5 appears, and she explores the trade-o� possibilities. Once a
mode is selected, the OS instructs the application to change its set-
tings using the setMode() callback function. It is the responsibil-
ity of the application developer to instruct her program to correctly
change its behavior according to the mode selection.

Figure 5: Interface to select application modes for a Twitter app.

5. CHALLENGES
For Application Modes to be adopted and maximize energy sav-

ings and user satisfaction, we and the community need to address a
number of important challenges.
Energy Pro�ling and Forecasting �e OS is at the right place to
maintain an energy context for the device. �is includes pro�ling
the energy consumption due to apps, and forecasting the expected
battery life given the current and alternative settings. Pro�ling at
least at the granularity of Application Modes is needed for guiding
developers on how to choose and optimize the modes themselves,
and forecasting is key in telling the user the impact of choosing dif-
ferent modes.�ere has been signi�cant progress in this area [10, 11,
15, 18, 24, 28], but there is still room for more precision, incorpora-
tion of segmented data from large user populations ([17] is a great
start), and better support for sharing and delegating resource usage.
Developer Adoption Application Modes place a burden on devel-
opers, and are only useful if adopted. We are hopeful that there will
be enough interest, given the bene�ts and the fact that some apps al-



Application Full Medium Powersaver
Location Tracking 1m precision, real-time 1m precision, every 15 minutes 50m precision, at least once a day
Navigation 3D map, audio, real-time location 3D map, audio, location near turns 2D map with directions only
Video Upload HD video, real-time upload SD video, real-time upload SD video, upload when charged
Twitter Real-time updates Updates every 5 minutes Updates on demand

Table 3: Example modes for some applications.
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Figure 6: Design space of power-management solutions based on whether
there is involvement or support from the user, the application, or from the
OS. Application Modes elicit preferences from the user, using lifetime pre-
dictions from the OS, and functionality descriptions from the application.

ready change their behavior in response to the context. Dropbox on
Android, for example, has an automatic photo-upload option, and
disables the feature if the battery is low.WithApplicationModes, the
developer would not have to write code to make sense of the battery
context. As per the previous paragraph, developers need accessible
energy pro�ling, as it is only by measuring the impact of design de-
cisions that a developer will make informed decisions to e�ectively
create modes. Lastly, the developer needs guidelines to not create
too many modes, modes that do not a�ect perceived app behavior
or expose too much detail. As in Chroma [2], we expect the num-
ber of relevant energy-saving optimizations from applications to be
small.
Limiting User Involvement Changes to the end-user experience
should be as little intrusive as possible. While user input is required
in many situations, the OS and applications should autonomously
act upon energy-related decisions asmuch as possible, throughmod-
els, services, and pro�les, only escalating what is really important.
Con�ict Detection and Resolution Since most current mobile de-
vices support multitasking, two ormore apps could have con�icting
modes. If two apps use the radio, having only one of thempromising
not to is of no use. �e OS should have a mechanism to detect and
resolve such con�icts, with possible involvement of applications and
ultimately of end-users. Another source of con�icts are global set-
tings not associated with any apps: a user setting the screen bright-
ness is one example.
Other Resources �e concept of Application Modes may apply to
contexts other than energy, such as data usage and privacy. Related
to previous challenges, the interaction andpotential con�icts of these
modes, and the possibility of an explosion of their number are im-
portant challenges we should address.

6. RELATED WORK
We build upon a large body of previous work that explores sup-

port from subsets of the user, the application, and/or the OS for

power management. We structure our discussion around Figure 6,
which lays out this space and points to representative works on each
subset. ApplicationModes lie in the common intersection, judiciously
involving applications, the OS, and the user when necessary.
Starting from OS-only support, ACPI-related and CPU voltage-

and frequency-scaling techniques, alongwithTailEnder [3] andCat-
Nap [7], try to automatically determine a global machine behav-
ior and estimate its best con�guration in light of energy savings. In
some speci�c occasions, they can be con�gured by users, although
it is not always clear how these global settings will a�ect individual
application functionality and energy-saving promises. Commercial
OSes also have measures for reducing active demand, such as Win-
dows Phone 7.5’s Battery Saver Mode, which disables background
processes and lowers the screen brightness when the battery charge
drops below a certain level, orApple iOS’s disallowing of background
processes as a global policy. As a research prototype, Llama [4] is an
adaptive energy-management system formobile devices thatmatches
energy consumption with user behavior via probabilistic adapta-
tion of system settings based on expected recharge time. Our work
supplements Llama by integrating both user and applications in the
adaptation process. In all these cases, because the OS lacks semantic
knowledge of the application, the obtained savings are limited.
In the absence of OS and application support, users are forced to

guess which settings, behaviors, or apps correlate with energy us-
age, having sometimes to understand speci�c implementation and
hardware details. �e OS can cooperate with the user by o�ering
more visibility and obtaining hints about desired behavior, such as
lifetime.We include here independent user-level services that mon-
itor other running applications. Examples include Koala [21] and
Carat [17]. Carat uses crowd-sourced usage data to suggest energy
savings based on the device’s state and past usage of similar devices,
and presents the expected improvement in battery life if the user
kills each of the currently running apps. ApplicationModes provide
an interesting complement by increasing the granularity of possible
user actions, as she can choose to change their functionality rather
than just terminating them.
Some applications attempt to optimize their energy use without

support from the OS or input from the user. Beyond development-
time pro�ling (e.g., [15]), some developers change the behavior of
the app depending on the battery level, like the Dropbox example
in §5. �ese applications may not have an obvious choice, though,
without user input, when there are di�erent changes in function-
ality in the Pareto frontier (cf. §2). Not surprisingly, some apps do
involve the user. Sygic [23] is a voice-guidedGPSnavigation app that
o�ers users distinct modes of operation based on di�erent power-
management pro�les. While this approach is bene�cial, not involv-
ing the OS has drawbacks. In the best case, there is a severe duplica-
tion of e�ort by independent developers, and in the worst case these
apps will make suboptimal decisions, given the lack of coordination
and the diversity of platforms on which they run.
Despite an initial e�ort to involve the user in energy-aware deci-

sions [10], many recent solutions have focused on the energy-saving
cooperation of the OS and app developers, perhaps to avoid alienat-
ing the user. A-States [12] are similar to Application Modes as they
propose a narrow interface between apps and the OS to enable the
coordination of power-savingmeasures without exchanging seman-



tic data. Our work di�ers in that we involve the end-user in the
decisions, as the desirability of di�erent modes, in our setting, is
not monotonic, but can exhibit user-speci�c trade-o�s. Eon [22]
and Energy Levels [13] provide programming abstractions and run-
times to predict resource usage in wireless sensor networks (WSNs)
and to automatically meet lifetime goals by deactivating or adapting
parts of an application. Resource-usage prediction is facilitated by
the single-threaded environment and periodic behavior ofWSN ap-
plications. Users are likely the developers, who possibly understand
the innards of such a complex system and there are almost no con-
cerns about usability. AlthoughApplicationModes provide a similar
abstraction and runtime, our focus is onmulti-tasked, quasi-acyclic
mobile applications that involves non-expert users.

Android’s wakelocks also focus on this type of cooperation by al-
lowing the kernel and user-space apps to control hardware suspend-
ing via reference counters to speci�c system components. To avoid
races between suspend and wakeup events, all user-space processes
need to be aware of the wakelocks interface. �is is acceptable for
Android, but not applicable to other Linux-based systems [26]. De-
velopers have proposed alternatives to wakelocks for the mainline
Linux kernel. Runtime PowerManagement6 is similar to wakelocks,
but is restricted to driver interaction with I/O devices. Autosleep7 is
a direct substitute which reuses components present in themainline
kernel. Applications could take advantage of both functionalities to
cooperatewith device drivers andprovide hints onwhen to suspend.
�ere are very few works that, like ours, involve support from the

three camps. Aside from Flinn and Satyanarayanan’s energy-related
extensions to Odyssey [10], Ghosts in the Machine [1] suggest giv-
ing the OS more visibility on the power state of I/O devices. Ap-
plications are adapted to issue hints to the device’s power manager
about their execution and help set the right power state, resulting
in performance and energy-conservation improvements. Users ex-
press �delity desires using a single unit-less knob that prioritizes
performance or energy savings. While it is fundamental to limit the
amount of input from the user, the diversity of mobile apps in our
context makes this single dimension too restrictive to express user
preferences, as di�erent users will have preferences in the Pareto
frontier that are not obvious to the developer or to the OS.

7. CONCLUSION
Application Modes enable the cooperation of the OS, applica-

tions, and users for e�cient energy management in mobile devices.
�e user’s only concerns are about di�erences in functionality and
their impact on battery life. ApplicationModes are particularly well
suited to cases in which there are multiple dimensions involved in
the users’ implicit preference function, with no total order among
them. Applications provide the OS with discrete modes that express
graceful degradation in face of limited energy. Further, the OS cen-
tralizes all of the knowledge and models about the current and fu-
ture energy contexts, removing this burden from apps. We plan to
use our abstraction and interface prototype for Android to instru-
ment more applications, and conduct full-platform powermeasure-
ments on real devices. �e real measure of success for an interface
is adoption, and we plan on conducting user studies with both de-
velopers and end-users.
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ABSTRACT
This paper envisions a new research direction that we call
psychological computing. The key observation is that, even
though computing systems are missioned to satisfy human
needs, there has been little attempt to bring understandings
of human need/psychology into core system design. This
paper makes the case that percolating psychological insights
deeper into the computing layers is valuable, even essential.
Through examples from content caching, vehicular systems,
and network scheduling, we argue that psychological aware-
ness can not only offer performance gains to known techno-
logical problems, but also spawn new kinds of systems that
are difficult to conceive otherwise.

1. INTRODUCTION
Many fields such as economics, business and medicine have
successfully leveraged psychological traits of humans to de-
sign better solutions [1–3]. In computing, researchers in human-
computer interaction (HCI) have long recognized the need to
embrace insights from human psychology [4–7]. This need
is clear because the way users interface with technology de-
pends on their psychological characteristics.

In this paper, we ask if computing systems can benefit from
embedding human psychological factors deeper into their de-
sign and not just their interfaces. We begin by describing the
origin of our inspiration—RedBox, a DVD rental company. We
argue that psychological factors that help RedBox succeed can
alleviate the crisis of bandwidth scarcity in cellular networks.

RedBox is a young company in the USA that sets up red-
colored kiosks in accessible locations such as grocery stores,
gas stations, and airports. The kiosks rent DVDs for a low
price (often $1) [8]. People who pass by these kiosks, say
when grocery shopping, check-out a DVD and return it the
next day. RedBox has been tremendously successful at the
same time that larger DVD rental stores (e.g., BlockBuster)
are losing business. What is surprising is that with just 50
DVDs per kiosk, and a few kiosks per zip code, RedBox is able
to cater to the needs of the population. People are not driving
to large rental stores with a much wider selection of DVDs;
many are happy picking a DVD from the limited options that
a RedBox kiosk offers.

We posit that RedBox’s success can be explained by psycho-
logical traits of humans. Human desires, especially those per-
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taining to leisure and entertainment, are not always rigid and
exhibit flexibility [9]. A customer may be in the mood for
an action movie, but may not have a specific movie in mind.
This customer’s needs can be met as long as the kiosk has at
least one movie that falls within her “circle of flexibility.” Fur-
ther, human flexibility can be increased through incentives,
and their choices can be influenced by stimuli in the environ-
ment. The incentive for using a RedBox kiosk is its cheaper
price and easier accessibility than a larger store. These fac-
tors may influence a customer to even rent a comedy if none
of the available action movies are to her liking.

We explore the possibility of leveraging the same psycholog-
ical factors to alleviate the bandwidth crisis in cellular net-
works. Cellular data networks are facing a serious crisis in
coping with increasing demands, especially of video content,
from mobile devices [10]. One promising solution is prefetch-
ing, i.e., predicting the content that the user is going to re-
quest in the future and downloading them over WiFi. Un-
fortunately, such prefetching has proved extremely difficult;
one almost needs a crystal ball to accurately predict the con-
tent that the user will request a few hours in the future, time
scales at which WiFi-based prefetching can help. Hence, most
schemes prefetch at much shorter time scales, e.g., top search
results can be prefetched if the user searches for a keyword
in Google. While this improves user experience, it does not
reduce 3G load [11].

Now consider how psychological factors above can change the
situation. Alice’s mobile device can roughly speculate about
her flexible content consumption interests (perhaps based on
her Web browsing history), and prefetch related videos over
WiFi. The prefetched videos need not precisely match what
Alice would later request; a reasonable set will suffice. Now,
when Alice wants to view videos and only 3G connectivity
is available, she is shown the list of prefetched videos. Of
course, she can stream a non-cached video over 3G (equiva-
lent to driving to BlockBuster), but because of flexibility and
incentives, she may often be happy with a prefetched video
(RedBox kiosk). The incentive is that prefetched videos play
uninterrupted–streaming over 3G can be jittery—and do not
contribute to her quota of cellular data. Our preliminary ex-
periments indicate that, with such a prefetching scheme, on
average users view 2 out of 3 videos from the cache. This in-
dicates a promising opportunity to reduce network load.

In the body of the paper, we argue that the application of
psychology is broadly useful and provide several examples
of such systems. Besides improving existing techniques such
as prefetching, psychological insights can facilitate new kinds
of systems. Consider driving, for instance. It is well known
that drivers are often distracted by emails and SMSs. Con-
sequently, governments are banning their use [12], and re-
searchers are developing technical solutions to detect when
the user is driving and disable the phone [13]. However,
recent psychological studies show that in certain conditions



driving without any distraction incurs an excessively low cog-
nitive load [14], inducing drowsiness and day-dreaming. This
implies that too little mental load is risky, just like too much
mental load. Taking this psychological factor into account,
we propose that smartphones should detect when the driver
is dozing off or drifting in thought, and intelligently present
“information snacks” to maintain the driver’s cognitive load
above a threshold. Such snacks could be in the form of read-
aloud emails, a quick display of a Facebook picture, or games
that require the driver to focus on the road. Our preliminary
experiments demonstrate the effectiveness of this approach.
Conceiving such systems requires co-thinking psychology and
technology, rather than studying them in isolation.

Current technological trends are ripe to begin thinking in this
direction. As we move from personal computers to personal
computing, the need for devices to intimately understand users
is greater. Fortunately, the convergence of smartphone sen-
sors (always on humans), smart objects in the surroundings
(measuring context), and recent advancements in machine
learning (making decisions from big data), make it feasible
to gain deep insights into human behavior and mood. Quan-
titative psychology, a burgeoning field, is already taking ad-
vantage of this convergence. The advantages could be mu-
tually reinforcing—technology could gain from psychological
insights that were in turn gained from technology.

This paper barely scratches the surface of what psychological
computing could be and puts forth assorted ideas to motivate
the case. We are aware that we are at a rather early stage.
Nonetheless, we believe that there is latent promise, and we
invite the community to give us feedback and get involved.
In collaboration with psychologists, important technological
changes are feasible. At the least, we believe it is worth trying.

2. MOTIVATING EXAMPLES
We motivate the need for factoring in psychological traits in
system design by outlining several diverse examples. For each
example, we present the psychological traits being exploited
and explain how they facilitate system designs that break away
from convention. For two of the examples, we also present
preliminary experimental results.

2.1 Overnight Pre-fetching and Caching
(Content Demand is Flexible)

Our first example is that of a system that prefetches content
when bandwidth is cheap (e.g., WiFi) for later consumption
when it is expensive or unreliable (e.g., 3G). It is based on
the following three observations about psychological behav-
ior, which we believe also underlie the success of RedBox as a
content dissemination platform.

(1) Human demands for some types of content (e.g., videos)
are flexible. Human demands for content are not always
rigid. Often, people do not have a specific content in mind,
but are open to suggestions. This openness is part of the rea-
son that people can find watchable movies from a RedBox
kiosk with only 50 DVDs.

(2) Human flexibility can be magnified with incentives
[15]. Some customers may prefer other movies than those
in the kiosk but still pick from the kiosk rather than going to

other places. Two incentives contribute to this behavior. The
first is accessibility: the kiosks are distributed at convenient
places where people naturally visit. The second is price: Red-
box movie costs $1, while bigger stores cost around $4.

(3) Fewer choices simplify decision making. While one
may think of Redbox’s limited movie choices as a disadvan-
tage, psychological studies show that fewer choices can ac-
tually be advantageous because it eases the decision-making
process [16]. When too many choices are present, humans
may make no choice at all because of the excessive cognitive
overhead in making the right decision.

The psychological factors above suggest that a content prefetch-
ing system can succeed by caching even a small library if users
have flexibility in content consumption. To validate this hy-
pothesis, we build a system to save 3G bandwidth. The mobile
device, instead of downloading contents through 3G on the
fly, can prefetch videos when WiFi is available, e.g., overnight.

2.1.1 Prototype Design
While the observations above and our techniques apply to
many forms of content, our prototype focuses on YouTube
videos because video content consumes a large amount net-
work bandwidth today and its share is expected to further
grow. Designing our system entails two main challenges. First,
we must infer the user’s interests at a coarse level; no incen-
tivization may convince a user to consume content in which
they are not even remotely interested. Second, we must iden-
tify a small set of videos to prefetch such that the user is likely
to consume a video from this set.

An overview of our system is shown in Figure 1. The inter-
est mining module infers the user’s interest by mining their
personal information such as Web history, email content, and
social network feed. Given historical data of these activities,
we use an NLP technique called SIP (Statistically Improba-
ble Phrase Extraction) [17] to mine for interests. SIP essen-
tially finds meaningful phrase combinations in textual data
that summarize the text. Table 1 shows a subset of interests
for three of our study participants.

Figure 1: Overview of overnight caching

Table 1: Example Interests
User1(Wireless) User2(Game) User3(Mobile)

Distributed Comp. New Vegas Efficient Retrieval
Summer Intern. Civilization V Life Log Based
Software Radio Scroll V Anatomy Netflix
Distributed Sys. The Vault

We then use the interests to identify a set of matching videos
through YouTube search queries. The Prefetching module de-



cides which videos to prefetch. It considers not only video rel-
evance and popularity but also the degree of diversity among
cached videos and the level of coverage they provide for the
topics of interest. For example, if the user exhibits interests
in both soccer and volleyball, we cache at least a few vol-
leyball videos as well, even though soccer videos tend to be
much more popular. Further, the relationship between videos
is also considered. Since YouTube users often follow the “re-
lated video” links after watching a video, the module chooses
to cache some of these related videos as well [18]. Our goal
is to maximize the possibility that the user will find at least
some cached content that falls within her circle of flexibility.

The prefetched content is advertised in a side-panel whenever
the user visits YouTube. This serves the role of explicit incen-
tivization towards cached videos. The list length is limited to
50 for a manageable browsing and selection effort.

2.1.2 Preliminary Results
We conducted a preliminary user study to evaluate our hy-
pothesis and techniques. For each user, we first identified
their interests based on their browsing history, and for each
inferred interest, we asked them if it was relevant. We then
prefetched videos based on those interests, and for each video,
we asked them if it was relevant (i.e., they would like to view
it at some point in time). Finally, we asked them to browse
YouTube for a fixed duration, during which they were free to
view prefetched or non-prefetched videos or a mix. We re-
cruited eight subjects, of which one subject only finished the
interest relevance portion of the study.

Figure 2 shows the performance of interest mining by plotting
the percentage of the mined topics that the subjects deemed
relevant. The average across users is 66%, which means that
even simple interest mining techniques can identify a user’s
interests.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

User ID

F
ra

ct
io

n 
of

 r
el

ev
an

t t
op

ic
s

Figure 2: The fraction of topics deemed relevant.
Figure 3 shows the fraction of prefetched videos that the sub-
jects deemed relevant. We see that this fraction varies from
10-60%, with the average being 40%. We find this encour-
aging given that the YouTube library is vast, in which only a
minuscule fraction is presumably relevant to a given user. We
show below that, because of psychological factors mentioned
above, this relevance rate is enough for users to consume a
significant fraction of the content from the cache. More so-
phisticated techniques (e.g., those based on collaborative fil-
tering) may further boost the relevance rate.

Figure 4 shows the comparison between cached and on-the-
fly videos users watched during the study. We find that 50-
75% of the videos viewed by the subjects were prefetched,
with the average being 65%. That is, two out of three viewed
videos were from the cache. These preliminary result suggests
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Figure 3: The fraction of videos deemed relevant.
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Figure 4: Number of watched videos
that our techniques can lead to a significant reduction in 3G
bandwidth consumed by users. Our experiments did not in-
volve economic incentive towards cached videos—there was
only a performance incentive. We expect higher cache usage
when economic incentives are involved.

2.2 Driving with Cognitive Comfort
(Controlled Diversion is Beneficial)

Driving in the USA can sometimes be monotonous. High-
ways can be empty, the view can be dull, and adaptive cruise-
control and blind-spot detectors can eliminate the sudden sur-
prise. In conjunction, the complete ban on phone-use while
driving is eliminating the periodic diversions. Such driving
conditions can translate to an excessively low cognitive load
on the driver, perhaps resulting in the driver dozing off or
drifting away in thought. Importantly, a DoT report and re-
lated research papers already show evidences of such cases –
called highway hypnosis [14]. The report predicts that the
problem is likely to become pronounced over time as cars
become semi-autonomous, leaving the driver with very little
work on average.

We view an opportunity for psychological computing here.
Our hypothesis is that a controlled level of diversion may be
beneficial to keep the cognitive load on the driver above a
threshold, which can help with remaining focused on driving.
To this end, we propose a system in which the driver’s smart-
phone is mounted on the car’s dashboard. The phone looks
for indications of dozing or hypnosis (such as through closing
eyelids and head stillness), and on detecting them, presents
the driver with electronic diversions. Such diversions could
be emails read out aloud, a picture displayed from a social
network feed, or even a game that forces the driver to focus
on the road. We call these diversions “information snacks” to
capture how they feed the driver’s mind and keep her vigilant
about road conditions.

We designed a user study to examine the merit of controlled
diversions during driving. The study is inspired by the stan-
dard psychological experiment – called MackWorth Clock –
that tests for human vigilance [19]. In MackWorth Clock test,
users are required to focus on the seconds hand of a clock,



and press a button whenever the hand skips a tick. The skips
are infrequent, measuring the extent to which the user can
remain vigilant under such monotonicity. We adapted the
MacWorth clock experiment, but replaced the clock with a
30 minute video recorded from a car’s windshield. The video
is monotonous because it is mostly recorded on an empty US
highway, however, at infrequent time points, a few frames
of the video are removed, causing a distinct glitch. We cre-
ated a web-based interface and asked volunteers to press a
key whenever they noticed the glitch. During some part of
the video, we periodically presented information snacks in
the form of audio and visual diversions. The diversions were
read-aloud news headlines and interesting facts, or interest-
ing pictures chosen from Flickr. A screenshot of our exper-
iment interface is shown in Figure 5(a), with a picture of a
deer as a visual diversion. We measured the accuracy of glitch
detection with, and without, diversions.

We find that without diversion, the accuracy proved to be
64.2%, but when presented with diversions, users achieved
83.3% accuracy. We also noticed improved detection when
the diversions were presented tens of seconds before the glitch,
perhaps suggesting that diversions increase human alertness,
which then decays. If such behavior holds in real-life driv-
ing, we conjecture that information snacks could be effective
there as well.
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Figure 5: (a) Screenshot from the driving diversion study.
(b) Glitch detection accuracy higher just after the diver-
sion, but decays over time.

2.3 Cognitive Load Aware OS
(Will Power is Like Muscle)

Many tasks on a computing device (e.g., coding, writing) in-
cur high cognitive load. Recent research shows that the main
resource exerted for such tasks—will power—is akin to a mus-
cle [20]. It gets tired and becomes less effective as it is used.

Based on this finding, we propose that computing devices
should help humans work more effectively. These devices are
in a good position to judge the depletion level of the user’s
will power, derived from the nature of the task, the length
of time she is working, and her rate of errors (e.g., number
of typos). When the system observes a well-focused user, it

could perhaps delay her incoming emails and other forms of
electronic distraction, even place her phone on least-activity
mode. When the focus begins to deplete, emails and social
feeds could be scheduled to arrive, and the user could even
be prompted to take a break.

2.4 Eagerness Aware Scheduling
(Perception of Time is Relative)

Human perception of “elapsed time” is inaccurate and often a
function of the situation. Attending a boring class for five min-
utes may appear far longer than watching a gripping video for
half an hour. This suggests that any form of system delay, as
experienced by humans, may not be measured in sheer time
difference between a request and response. Rather, the user’s
experience could be a function of the “perceived time”. If the
network could receive hints about the user’s current percep-
tion (say, the user is waiting alone at a bus stop), her trans-
mission could be prioritized to reduce her perceived waiting
time. On the other hand, a student chatting on IM may start
browsing videos at the same time – such a student need not
be prioritized when the system resources are constrained. To
generalize this, networking systems could account for human
eagerness while scheduling resources. This is of course dif-
ferent from traditional techniques that prioritize purely based
on the application category, i.e., real-time applications over
delay-tolerant ones.

2.5 Psychology Aware Compression
(Unequal Focus on Pixels)

Conventional image compression techniques utilize understand-
ings of human visual properties. However, these schemes of-
ten do not consider the semantic meaning of the image con-
tent and its implication on human perception. While viewing
a content, say an image or a video, a user attaches unequal
importance to different parts of the content. Psychological
studies have shown that when the content theme is human re-
lationships, for instance, viewers’ eye movements are biased
to human faces, to the extent that one can miss the presence
of other objects in the scene [21]. Figure 6 is extracted from
the famous Yardbus experiment in 1967, showing an example
of a picture and the corresponding eye movements. If such
disparities exist in the way viewers “consume” pixels, com-
pression schemes can take advantage of them. Depending on
the theme, certain parts of the content can be retained at high
fidelity, and others treated with a higher compression factor.

Figure 6: YardBus’ study showing how viewers’ eye move-
ments are biased towards faces when human relation-
ships are the subject of the picture.

In bandwidth or latency constrained operations, such trade-
offs may be welcome. Graphics rendering could also exploit
the above observation. Some parts of the images can be ren-
dered at lower fidelity, saving computational cost and energy.



3. FRAMEWORK AND DISCUSSION
This vision paper is an early exposition of formative ideas and
intuitions. We discuss some of the open questions here.

3.1 PSY Layer Implementation
The notion of human psychology is obviously complex and
context-sensitive. A key challenge is to make suitable abstrac-
tions that can be systematically used in computing systems.

Our intuition is that psychological attributes may be viewed
as operating at two time-scales, and should be treated differ-
ently. The first class is composed of slowly-changing or sta-
ble attributes, those that correspond to “inherent nature” or
habits (e.g., flexibility in video demand). The system can di-
rectly apply this knowledge (e.g., an empirical flexibility fac-
tor) for prefetching and caching. The second class is com-
posed of short time-scale, “state-dependent” attributes, those
that impact users’ behavior, actions, and current mental state
(e.g., cognitive load). Of course, the system would need to
capture these “state” information proactively via sensing.

Our deliberations on an architectural framework for psycho-
logical computing resulted in more than one design choice.
Figure 7 shows one possible framework. In this design, we en-
vision a psychological module (PSY) embedded into the OS of
the mobile device. This module implements common services
related to psychological computing from which many appli-
cations can benefit, to minimize duplication of effort across
applications. Embedding PSY in the OS also makes the OS
aware of psychology-related factors, and PSY benefits from
the context-inferencing functionalities in the OS [22].

Figure 7: A framework for psychological computing.

The proposed PSY module consists of two components. The
“Nature” module is modeled after the “inherent nature” of hu-
mans. It can be viewed as a storage of fixed parameters and
predefined logic that are consistent with common/expected
behavior. To capture these, the “Nature” module in PSY needs
to assimilate knowledge about the user (e.g., how flexible a
user is), and more importantly, incorporate new findings from
modern psychology and brain sciences. The “State” module
offers a library of current psychological characteristics and
behaviors, through both request-response APIs and publish-
subscribe APIs. Example APIs include currentCognitiveLoad(),
impatienceIndex(), mood(), onCognitiveLoadChange(), and when
possible, some physiological indicators, such as heartRate()
and pulseOximeter(). The OS, network stack, and applications

draw from both the long and short term classes, depending on
their goal. Table 2 shows how a few example applications can
be supported by this framework.

Table 2: Support Example Applications
Example Applications Module Variable

Prefetching Nature Flexibility
Compression Nature Visual Attention Bias

OS, Driving, Scheduling State Cognitive Load

As stated before, this architecture is not the only possible de-
sign. Another alternatives is a cross-layer design that incor-
porates different levels of behavioral information separately
(e.g., facial expressions (smile, frown, etc) could be an ex-
ample of explicit, low-level information. On the other hand,
the user’s mood may be a sophisticated, high-level state.).
We converged on the Nature-State archictecture because we
found it most useful towards implementing the examples we
presented. But we do realize that we are early in our thinking
and significantly more experimental work is needed to pro-
duce a good design.

3.2 Challenges
Realizing the framework above entails many challenges. We
discuss two of the main challenges here.

The first challenge relates to identifying the psychological traits
that can be exploited towards system design. Admittedly, psy-
chology is a deep field by itself. Limited by our current under-
standing, most of the discussion in this paper relates only to
behavioral and perceptual psychology, especially the quantita-
tively measurable portion. Fascinating studies in these fields
have uncovered many human biases and traits. In addition
to the traits mentioned previously, some of them are: (1) hu-
mans simplify their decisions based on implicit comparisons,
e.g., when given a choice between a paid vacation to Rome,
a paid vacation to Paris, and paid vacation to Paris except for
the coffee charges, a large fraction of users chose the second
option. This is because while comparing between Paris and
Rome is difficult, the benefit of free coffee is obvious. There-
fore, the second option suddenly looks like a bargain com-
pared to the other two choices. (2) Fatigue can be alleviated
if a human switches to a different task that stimulates a differ-
ent part of the brain. We wonder if these, and various other
psychological properties of the mind, can be accommodated
in systems of the future.

The second challenge relates to inferring the users’ current
state and inherent nature. The field of behavioral psychology
focuses on observable behavior, and their link to psychologi-
cal conditions. Advancements in sensing and pattern recogni-
tion technology is helping this field uncover fascinating con-
nections. For instance, a recent study shows that the cogni-
tive load on a person can be measured based on pupil dila-
tion [23]. Recent works by Picard et. al. from MIT demon-
strates the ability to recognize a user’s heart rate by observ-
ing her through a webcam [24]. Progress in psychological
computing will rely heavily on such advancements and cross-
disciplinary research will be vital.

3.3 Natural Questions
(1) Psychological computing may often leverage the user’s
context. In that sense, is this essentially context-aware
computing? Context is a broad term defined by the “cir-
cumstances that form the setting of an event or object” [25].



While a large body of past work has leveraged the physical
context (e.g., ambience, location, time, activity), we are un-
aware of any systematic effort to exploit the psychological
context in core technology. Of course, the psychological con-
text may sometimes manifest itself through physical contexts,
such as a person dozing off because of a low cognitive load.
We aim to measure the physical activity of dozing off, but uti-
lize the psychological context underneath (i.e., low cognitive
load) for system design. It is the use of this hidden variable,
we believe, that differentiates psychological computing from
context-aware systems.

(2) Why is psychological computing not a pure HCI prob-
lem? HCI is obviously positioned to leverage psychological
factors. However, we believe that incorporating psychological
primitives into the “system core” may offer significant benefits
beyond a pleasant user experience. For example, many appli-
cations, including comfortable driving and eagerness-aware
scheduling, can be supported by a common cognitive load API
exposed by the OS. Perhaps more importantly, the benefits
here do not relate to only the users’ experience; the system
itself benefits by making more efficient resource allocation
(CPU cycles, battery, storage).

(3) How to prevent the system from misbehaving seri-
ously when it misinterprets users’ mental states? Like
context-aware systems, the accuracy of psychology-aware sys-
tems may not be perfect. Therefore, how to prevent the sys-
tem from annoying the user when such errors occur is an
important challenge. While we do not have a full solution,
erring on the side of conservativeness may be a helpful guide-
line. For instance, in the cognitive load-aware OS example,
the system should gradually increase the level of task shuf-
fling. It should trigger a psychology-aware action only after it
has gained adequate confidence in its inferences. Moreover,
if the user ever manually overrides the system’s decision, the
system should back-off and not disturb the user until the user
specifies otherwise. In other words, the system should avoid
being intrusive and provide a scheme to fall back to a conven-
tional system.

4. RELATED WORK
Outside the area of HCI [5–7], a few prior works have also ex-
ploited psychological theories for different purposes. For ex-
ample, Verendel [26] investigates security issues taking ratio-
nality into consideration. Also, Shye et al. [27] leverage hu-
man physiological traits to control microprocessor frequency
in order to save energy. The TUBE project [28] brings humans
into the decision loop to alleviate network congestion. Build-
ing on these efforts, we argue for systematically embedding
human psychology deeper into computing systems.

5. CONCLUSION
Computing systems were envisaged to serve human needs.
We argue that, in our eagerness to build sophisticated sys-
tems, we may not have adequately comprehended the nature
of these needs. Yet, the success metric of computing sys-
tems seem strongly influenced by these needs, and is likely
to become more so, as technology percolates into every cor-
ner of our lives. This paper postulates that improved compre-
hension of human psychology can help improve the systems
we build, both in terms of performance and relevance. We

sketch early examples in cellular networking, vehicular sys-
tems, scheduling, and content encoding, and generalize them
to a broader direction that we refer to as psychological com-
puting. Although premature in its current state, we believe
this direction has promise, and present it to the community
for feedback, opinion, and involvement.
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ABSTRACT
Wearable cameras and displays, such as the Google Glass, are
around the corner. This paper explores techniques that jointly
leverage camera-enabled glasses and smartphones to recognize
individuals in the visual surrounding. While face recognition
would be one approach to this problem, we believe that it may
not be always possible to see a person’s face. Our technique is
complementary to face recognition, and exploits the intuition
that colors of clothes, decorations, and even human motion
patterns, can together make up a “fingerprint”. When leveraged
systematically, it may be feasible to recognize individuals with
reasonable consistency. This paper reports on our attempts, with
early results from a prototype built on Android Galaxy phones
and PivotHead’s camera-enabled glasses. We call our system
InSight.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware; C.2.4 [Computer-Comunication Networks]: Distributed
Systems

General Terms
Design, Experimentation, Performance

Keywords
Wearable camera, visual fingerprinting, smartphones, aug-
mented reality, matching, recursion, distributed cameras

1. INTRODUCTION
Imagine a near future where humans are carrying smartphones
and wearing camera-embedded glasses, such as the Google
Glass. This paper intends to recognize a human by looking at
him or her from any angle, even when her face is not visible. For
instance, Alice may look at people around her in a social gather-
ing and see the names of each individual – like a virtual badge –
suitably overlaid on her Google Glass display. Where revealing
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names is undesirable, only a tweet message could be shared.
People at the airport could tweet “looking to share a cab ”, and
Alice could view each individual’s tweet above their heads. In
general, we intend to extend augmented reality [1, 2] to humans
and the key challenge pertains to differentiating individuals. We
explore options outside face recognition [3, 4].

Our core technique exploits the intuition that faces are not nec-
essarily the only “visual fingerprint” of an individual. Features
combined from clothing colors, body structure, and motion
patterns can potentially be fingerprints for many practical sce-
narios. There is evidence of this opportunity given that humans
can often recognize another human without looking at her face.
This paper asks: can sensor-enabled smartphones and wearable
glasses together achieve the same?

Our main idea is simple and illustrated through Figure 1. When-
ever a user Bob uses his phone (such as while checking emails),
the phone’s camera opportunistically “takes a peek” at Bob.
Through image segmentation and processing [5, 6] the phone
extracts a visual fingerprint – a feature vector that includes
clothing color and their spatial organization. The spatial organi-
zation captures the relative locations of each color in 2D space,
hence a red over blue shirt is different from blue over red. This
spatio-chromatic information – called Bob’s self-fingerprint – is
announced in the vicinity. Nearby smartphones receive a tuple:

SBob = <Bob, Bob’s self-fingerprint>.

Now consider Alice (wearing a Google Glass and carrying a
smartphone) looking at a group of people that includes Bob.
A picture from the glass is processed on Alice’s phone (or in
the cloud), and through image segmentation and analysis, the
phone computes each individual’s spatio-chromatic fingerprint,
Fi . Since Alice has separately received Bob’s self-fingerprint,
SBob , a matching algorithm computes the similarity between Fi
and SBob . If one of the fingerprints, F j matches strongly with
SBob , then Alice’s phone can recognize Bob against the group
of people. An arrow labeled “Bob” can now be overlaid on the
image segment that generated F j ; Alice can view this either on
her Google Glass display or on her smartphone screen (as shown
in Figure 2).

Realizing the above idea presents a number of challenges. Bob’s
self-fingerprint is likely to capture only some parts of his cloth-
ing, and may not be adequately discriminating (particularly
when Alice views Bob from the back, or when Bob is partially
visible in the crowd). Even if front and back fingerprints are
somehow available, and Bob is fully visible, ambiguity can arise
when people are wearing similar dresses, say in a birthday party



Figure 1: Sketch of InSight: Bob’s phone announces his own name and fingerprint to the vicinity; Alice’s phone computes fingerprints
from her glass, matches them against the ones received from the vicinity, and recognizes Bob.

  Bob  

Figure 2: An arrow labeled “Bob” overlaid on Bob in the smart-
phone’s screen.

with a dress theme. Finally, even when all is well, different light-
ing conditions, wrinkles on clothes, and human mobility can
inject errors into the system. Coping with these challenges are
indeed non-trivial, however, we believe that certain opportuni-
ties can help, as described next.

(1) Even if Bob’s self-fingerprint is not highly discriminating,
Charlie may luckily identify Bob when Bob happens to be alone
or around a few people wearing sharply contrasting clothes.
Since Charlie now sees Bob’s full clothing, he could enrich Bob’s
self-fingerprint with more information and upload it to the
cloud. The enriched self-fingerprint helps others discriminate
Bob better, which in turn enables more frequent opportunities
to enrich his fingerprint – a recursive process. We find that the
system converges in our limited set of experiments, enriching
almost everyone’s self-fingerprints.

(2) If the system still contains visual ambiguity, we observe
that short term motion can be exploited. When Bob moves at
a certain pace in a certain direction, Bob’s accelerometer and
compass could compute his motion vector and include it in his
self-fingerprint. Alice could compute a similar motion vector
from a short Google Glass video (by comparing a few consecu-
tive video frames [7]), and match against all the motion vectors
embedded in received self-fingerprints. If the best match corre-
sponds to Bob, then Alice can disambiguate Bob despite visual
similarity.

This paper is targeted to harness these opportunities. Our early
prototype, built on Android phones and PivotHead camera-

equipped glasses, implements basic self fingerprinting and
matching. Offline experiments with 15 people in a clique yield
promising results – 93% of correct recognition when viewed
from the front. When viewed from the back, the accuracy
degrades sharply. However, when different views are used to
recursively enrich fingerprints (implemented via monte carlo
simulations), the system converges to 96% accuracy even when
viewed from the back; the front-side accuracy is perfect, and
the convergence time is not long. Overall, InSight is an au-
tonomous, self-correcting scheme, much different from a crude
color matching idea proposed in our earlier work [8]. If success-
ful, InSight could perhaps trigger new thinking in human-centric
augmented reality applications [9].

2. SYSTEM SETTING
InSight assumes that Bob uses his smartphone to check emails
or browse the Internet. When the phone is held in a specific ori-
entation and the display senses finger taps – partly ensuring that
the front-facing camera is facing Bob’s upper body – the phone
takes a few opportunistic pictures1. The pictures are analyzed,
visual fingerprints extracted, and concatenated with the name
“Bob”, or any content/tweets that Bob intends to make visible.
This self-fingerprint is either announced to the vicinity via Blue-
tooth Low Energy (BLE) or transmitted to the cloud along with
the Bob’s rough location. With BLE beacons, nearby phones di-
rectly receive the fingerprint. For cloud-based access, all phones
update the cloud with their locations; the cloud matches the
fingerprints and pushes back the recognition results. While both
approaches present tradeoffs, we use the cloud based approach.
As we will see later, the cloud based approach allows a central
repository of fingerprints that can be distributedly updated by
different people over time.

A viewer Alice looks at different people, and when in need to
recognize a person, presses a button on her camera-enabled
glass. A short video – of around 3 seconds – is recorded and
transferred to her smartphone via WiFi or BLE, whichever is
available on the glass. In the default case, the phone processes
one of the frames in this video, separates different individuals
in this image, and extracts visual fingerprints corresponding to
each of them. For each computed fingerprint (sent to the cloud),
the cloud computes a “similarity” with Bob’s self-fingerprint.
When the similarity is greater than a high confidence threshold,

1We discuss privacy issues in Section 5.



the cloud identifies Bob – Alice’s phone superimposes an arrow
on her phone screen or the glass display. When the similarity
is sub-threshold, InSight explores motion patterns (speed and
walking direction) for better recognition.

A natural question might be: why not utilize the user’s location as
a form of identification? While this is indeed a possible approach,
we believe that such precise location in indoor spaces is unavail-
able today. Moreover, it may not be easy to extract depth infor-
mation from the video, i.e., if Alice is looking down a corridor, its
unclear what “location” she is looking at. Finally, locations need
to be combined with compasses to compute the line of sight of
the viewer; given compasses have a reasonably large error, es-
pecially indoors, pure location-based solutions may not suffice.
However, location and compasses can be used to narrow down
the search space for visual recognition. While we don’t leverage
this opportunity (to understand the limits of our techniques), we
certainly intend to optimize InSight with location, compass, and
face recognition in the future.

3. SYSTEM DESIGN
We sketch the basic design decisions underlying InSight. Several
deliberations underpinning these decisions are curtailed in the
interest of space.

3.1 Extracting Self-Fingerprints
Figure 3(a) shows an example photo taken opportunistically by
InSight2. The key task here is to extract a visual self-fingerprint
that is robust to lighting conditions, viewing angle, and view-
ing distance. Put differently, even if different people look at
the same person from different positions (Figure 3(b)), the
fingerprint from all these views should reasonably match the
self-fingerprint. As a first step, InSight automatically crops out a
rectangular region from picture – the part below the face/neck. It
then applies two well known techniques on the cropped image,
namely (1) spatiograms, and (2) wavelets.

Figure 3: (a) Upper body view when user browsing on his smart-
phone (b) View from user wearing a glass.

(1) Spatiograms: Spatiograms are essentially color his-
tograms with spatial distributions encoded in its structure. Put
differently, while basic color histograms only capture the relative
frequency of each color, spatiograms capture how these colors
are distributed in 2D space. The second order of spatiogram can
be represented as [10]:

2Recall that this occurs when the accelerometer senses that the
phone is at an appropriate angle, and the user is typing.

hI (b) =< nb ,µb ,σb >, b = 1,2,3, · · · ,B ,

where B is the number of color bins, nb is the number of pixels
whose value falls in the bth bin, and µb and σb are the mean
vector and covariance matrices of the coordinates of those pixels
respectively. Through such a representation, a white over red
stripe can be distinguished from a red over white stripe, even if
the number of red and white pixels are identical in both. Also,
to cope with various viewing distances, we normalize the spatial
information with respect to the shoulder width so that all the
spatial representation is relative to the captured body size in
each photo. Finally, to decouple lighting conditions from the
colors, we convert the pixels from RGB to HSV , and quantize
them into B = 10x4x4 bins.

(2) Wavelets: Apparels are often fashioned with patterns
that run horizontally, vertically, or along diagonals. InSight cap-
tures them by computing the energy distribution over wavelet
sub-bands [11, 12] along the vertical (Ev ), horizontal (Eh ) and
diagonal (Ed ) dimensions. As a result, different organizations
of edges exhibit distinct feature vectors in our representation
(Figure 4). We also use the ratio between Ev and Eh to improve
robustness against different viewing distances. This is because
viewing from afar usually leads to loss in resolution, which im-
plies fewer detected edges. However, since this lossy behavior
affects vertical and horizontal stripes equally, the ratio between
Ev and Eh remains almost unchanged.

Figure 4: (a) Image for self-fingerprint (b) corresponding en-
ergy over wavelet sub-band along horizontal axis.

3.2 Extracting Fingerprints from Glass View
Bob’s self-fingerprint is a combination of the spatiogram and
wavelet representations. Later, when Alice views Bob through
her glass – either from the front or from the back – InSight again
crops out a rectangular region around Bob’s upper body (below
the face/neck), and applies the same fingerprinting operations
on this image. These fingerprints – one from Bob and another
from Alice – are now ready for matching.

3.3 Fingerprint Matching
Our matching algorithm first computes the spatiogram simi-
larity between each person in Alice’s view with the given self-
fingerprint (from Bob). Denote the spatiograms to be compared

as S = {n,µ,σ} and S
′ = {n

′
,µ

′
,σ

′
}, both having B color bins. We

define the similarity measure as [13]:
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Essentially, the similarity decreases (following a Gaussian func-
tion) with increasing difference between the colors and their
spatial locations.

Following this, we dynamically train a model using the wavelet
features of the same two fingerprints. The classifier in use is a
bagged decision tree (BDT). The BDT selects random samples
from the training data, builds multiple decision trees (each with
a subset of samples), and eventually chooses a weighted majority
voting result as the final output. The classification results are
accompanied by confidence scores that quantify the uncertainty.
In the end, the algorithm combines the similarity values from
spatiograms with the confidence-scores from wavelet classifiers,
and selects a candidate whose confidence exceeds a high thresh-
old. When the confidence is below this threshold, our current
system declares “unsure”, an attempt to minimize incorrect
recognition.

3.4 Refining the Self-Fingerprint
Bob’s self-fingerprint is derived from a sliver of his dress, and
may not be adequately discriminating against a background
of many individuals. Moreover, Alice may view Bob from his
back, and this “back fingerprint” may not match well with Bob’s
self-fingerprint (derived from his front view). This could be due
to differing patterns at the back of Bob’s shirt; differing wrinkles;
and/or unequal lighting conditions. We identify opportunities
to consolidate front and back fingerprints, which in turn can
improve the robustness of recognizing Bob. Our core intuition
exploits natural human mobility as described next.

Consider a social gathering where humans are naturally walking
around, to the extent that from any camera view, people in Bob’s
background changes over time. This diversity of backgrounds
is likely to become contrasting to Bob at some point. In other
words, even if Bob’s self-fingerprint is not highly discriminat-
ing, in certain favorable situations, the fingerprint may suffice
because people in Bob’s background are wearing different col-
ored clothes. At this point in time, since Charlie may be able
to recognize Bob and actually see his full attire (through her
glasses), he can enrich Bob’s fingerprint. Enriching would entail
informing the cloud that Bob’s fingerprint should be updated
with spatiogram and wavelet features derived from his trousers,
center of the shirt, etc. Later, if Julie happens to view Bob from
the back, this enriched fingerprint may now help recognize Bob
(perhaps because the trouser colors are discriminating). This
can in turn lead to further enrichment – Bob’s fingerprint can
now be updated with the visual features of his back.

Over time, one may envision everyone’s fingerprint getting en-
riched, which improves recognition, which in turn facilitates en-
richment. This recursive process may eventually converge, re-
sulting in fairly unique fingerprints for almost all. Our controlled
experiments in the next section will endorse this intuition and
indicate room for improvement.

4. EVALUATION
We implement a prototype of InSight using PivotHead camera
enabled glasses (Figure 5) and Samsung Galaxy phones running
Android. We conduct experiments with 15 users dressed in their
regular attires. We explicitly asked these participants to actively
use their smartphones. Each phone opportunistically takes
“profile” pictures of the user. In this process, InSight selects the
most suitable pictures via angle detection using accelerometer

readings, face detection, and blur estimation. The automatically
chosen pictures are then used to form the “self-fingerprint” for
the user. The PivotHead glass was worn by a single user who cap-
tured all the other users from the front and from the back. In our
preliminary experiments, the users captured in the glass view do
not overlap with each other – we controlled the experiment in
this manner for the purpose of simplicity.

Our main findings may be summarized as follows: (1) We con-
firm that color spatiograms and pattern wavelets capture com-
plementary features of a person’s dress – together, they are effec-
tive in discriminating an individual from the rest 14. (2) When
people are facing the glass, they can be accurately recognized us-
ing their self-fingerprints. (3) Through monte carlo simulations
on real fingerprints, we demonstrate how recursive fingerprint
refinement can help recognize a person, even when she is facing
away from the glass.

8MP  Camera  

1080P  HD  Video  

44.4Khz  Microphone  

Control  Button:  Burst  

Capture,  Resolutions,  Frame  

Rates  (60fps  &  30fps)  

Figure 5: PivotHead camera glasses used for InSight.

4.1 Combining Colors and Patterns
To assess the discriminative abilities of color and pattern fea-
tures, we first evaluate them separately when 15 people are
facing the glass – we extract their features from the glass view.
Figure 6(a) shows the confusion matrix represented using a heat
map. Element i j of the matrix reflects the similarity score when
InSight compares the spatiogram corresponding to person i in
the glass-view with that of self-fingerprint of person j . A lighter
color indicates higher similarity, and vice versa. If diagonal
elements are much lighter than the rest, then spatiograms alone
may be considered discriminative. With Figure 6(a), this is true
for 80% of the cases.

Figure 6(b) reflects the confidence scores in the confusion ma-
trix, when wavelets are used to extract features from clothing pat-
terns – the recognition accuracy is 73%. While this is not high,
we find that spatiograms and wavelets exhibit complementary
behavior (compare failure cases in Figure 6(a) and Figure 6(b)).
When color spatiograms fail to differentiate two people, pattern
wavelets are able to distinguish them. Therefore, we combine
these two approaches by computing the product of their similar-
ity and confidence scores. Figure 6(c) presents the result of this
hybrid approach. The accuracy improves distinctly; 14 out of 15
people are recognized without ambiguity. The rest of the evalua-
tion employs this hybrid approach.

4.2 Performance with Self-Fingerprints
Since self-fingerprints capture the front view of a person from
a close range, its important to characterize whether they are
effective when others view the person from a distance, and
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Figure 6: All users facing the glass: (a) Similarity scores from spatiograms; (b) Confidence scores from classification using wavelet
features; (c) The effect of combining color with patterns.

sometimes from the back. To address this question, we evaluate
the discriminative power of InSight by varying the number of
users facing towards and away from the glass. We conduct ex-
periments with all possible user combinations, ranging from only
1 user to all 15 users.

Figure 7 evaluates scenarios when all users are facing the glass.
For scenarios with n users (on the x axis), the graph shows the
average percentage of users correctly recognized, falsely recog-
nized, and unrecognized. The average is computed over all the
possible combinations, e.g., 105 combinations in case of 2 users
in the view. Evidently, the accuracy drops slightly (from 100% to
93%) from the 1-user to the 15-user scenario. None of the users
are recognized incorrectly as someone else. This suggests that
when Bob is facing Alice, self-fingerprints may be adequate for
reliable human recognition.
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Figure 7: Matching self-fingerprint with front view

Now consider the case where users are facing away from the
glass, but their self-fingerprints used to recognize them. Figure 8
shows the results. In most cases, InSight is unable to recognize
individuals, particularly when there are many users. This is not
too surprising since the glass only captures users’ back views
and needs to compare them with the self-fingerprints taken
from the front. However, a positive outcome is that very few
users are incorrectly recognized. Moreover, when there are only
few people around, some of them can be recognized from their
back view. Next, we describe how these few instances can be
leveraged to bootstrap “fingerprint refinement”, such that even
back-views can discriminate people in a crowded situation.

4.3 Performance with Refined Fingerprints
Consider those few lucky instances when Alice recognizes Bob
even though Bob has his back facing Alice (note, these instances
are more probable when few people are around). Knowing that
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Figure 8: Matching self-fingerprint with back view

this is Bob’s back view, InSight can refine Bob’s fingerprint (i.e.,
the cloud updates Bob’s self-fingerprint to also contain features
from the back-side of his dress). This refinement is feasible only
because InSight is rarely wrong in recognizing people (when
unsure, InSight refrains from making a recognition). Thus, if
Bob is recognized once, Bob can be recognized quite accurately
thereafter even in a crowded place. This is regardless of whether
his front or back is facing the glass.

To validate the fingerprint refinement approach, we conduct the
following monte carlo simulation. We randomly choose 4 people
with their backs facing the glass. We compare each of their back
views with their self-fingerprints. When there is a strong match,
the corresponding <ID, back view> is added to the InSight sys-
tem. This step is repeated 200 times, and over time more such
back views get added to the system. Once the same ID gathers 5
or more back views, we pick the most dominant one as that ID’s
back fingerprint. Gradually, the accuracy of recognizing a per-
son with a back view improves since it would be compared to
back fingerprints when available. Even when Bob’s back finger-
print is not in the system, back fingerprints of others help narrow
down the search space considerably, enhancing the chances of
recognizing Bob using his front-side fingerprint. We perform 500
runs of this simulation and show the average results in Figure 9.
The system converges, and increasing number of users get recog-
nized correctly over time, even when all of them have their back
facing the glass. Some errors indeed occur, but they do not prop-
agate in the system due to the overwhelming number of correct
recognitions.

5. DISCUSSION
Many more challenges need to be addressed, several opportuni-
ties need to be exploited. We discuss a few here.
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Figure 9: Matching back view after refining fingerprints.

(1) Incremental Deployment. Non-participants of this sys-
tem – those not running InSight – are likely to be mis-recognized
(even though ideally they should be labeled “unknown”). While
this is indeed a problem, work arounds may be feasible. If Alice
views Charlie but finds that none of the announced fingerprints
match with him, then Alice can suspect that Charlie is not a
part of the system. Over time, this suspicion could grow as
more people are unable to recognize Charlie, eventually tagging
Charlie as “unknown”. Of course, if Charlie is wearing a dress
similar to Bob, then the situation is harder. InSight has to wait
for adequate opportunities to find Charlie separate from Bob, so
that the suspicion value rises above a threshold – a key challenge
for our ongoing work.

(2) Privacy of Opportunistic Pictures. Taking opportunistic
pictures, while creating the self-fingerprint, may raise privacy
issues. Although the camera takes pictures only at specific orien-
tations, we believe that a concerned user can choose to manually
create the self-fingerprint. For instance, if InSight is used occa-
sionally – only at certain conferences or events, or when the user
needs to broadcast a message – it may not be burdensome to
take a self-picture only at those times. However, regular use may
call for additional privacy precautions; one simple way could be
to show the automatically-taken picture to the user before using
it for fingerprinting.

(3) Overlapping Users in View. When one views a crowded
gathering, it may not be easy to crop out each individual from
the image. People may be overlapping in their views, and only
a small part of their dresses may be visible. InSight will need to
evaluate the impact of such complicated views of individuals,
especially in crowded settings.

(4) Application scenarios. InSight enables use-cases in which
a user Bob intends to convey some information to anyone who
visually looks at him. One may view this as a form data broad-
cast using a visual “source address”; the recipients are all users
whose line of sight intersects with the transmitter. Specific in-
stances in which such visual broadcasts are applicable include
virtual badges in a conference, students tweeting about their ar-
eas of interest in a job fair, etc. Also, several use-cases do not
require revealing the user’s identity – a person at a basketball sta-
dium can simply tweet “selling an extra ticket for tonight’s game”.
One may even view InSight as a way of social messaging, similar
to how people where T-shirts with interesting captions on them.

6. CONCLUSION
This paper pursues a hypothesis that colors and patterns on
clothes may pose as a human fingerprint, adequate to discrim-

inate one individual from another in low/moderate density
situations. If successful, such a fingerprint could be effectively
used towards human recognition or content announcement in
the visual vicinity, and more broadly towards enabling human-
centric augmented reality. Pivoted on this vision, we develop
a proof of concept – InSight – using which users create a visual
fingerprint of an individual and compare it with that individual’s
self-created fingerprint. Preliminary evaluation with 15 people
wearing natural clothes, suggest promise – we find that clothes
indeed exhibit good entropy, and can be automatically finger-
printed/matched with reasonable accuracy. Our ongoing work
is focussed on coping with the issue of incremental deployment,
as well as exploring motion patterns when visual fingerprints are
not unique. We believe there is promise, and are committed to
building a fuller, real-time, system.
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ABSTRACT
Due to limited processing capability, contemporary smart-
phones cannot extract frequency domain acoustic features
in real-time on the device when the sampling rate is high.
We propose a solution to this problem which exploits the
sparseness in speech to extract frequency domain acoustic
features inside a smartphone in real-time, without requiring
any support from a remote server even when the sampling
rate is as high as 44.1 KHz. We perform an empirical study
to quantify the sparseness in speech recorded on a smart-
phone and use it to obtain a highly accurate and sparse
approximation of a widely used feature of speech called the
Mel-Frequency Cepstral Coefficients (MFCC) efficiently. We
name the new feature the sparse MFCC or sMFCC, in short.
We experimentally determine the trade-offs between the ap-
proximation error and the expected speedup of sMFCC. We
implement a simple spoken word recognition application us-
ing both MFCC and sMFCC features, show that sMFCC
is expected to be up to 5.84 times faster and its accuracy
is within 1.1%− 3.9% of that of MFCC, and determine the
conditions under which sMFCC runs in real-time.

Keywords
Smartphone, Speech, Sparse FFT, MFCC

1. INTRODUCTION
All major smartphone platforms these days support nu-

merous voice driven applications such as – voice commands
(e.g. to launch an application or call some contact), voice-
enabled search (e.g. Google’s voice search), voice recogniz-
ing personal assistant (e.g. iPhone’s SiRi), and voice-based
biometrics. There are also non-voice sound driven applica-
tions, such as the music matching service from Shazam [22].
All of these applications require fast acoustic feature extrac-
tion both in time-domain and frequency-domain in order to
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offer fast, real-time services. While using only the time-
domain acoustic features is sufficient in a limited number of
applications, the frequency-domain features are a must for
a robust and accurate encoding of acoustic signals.

State-of-the-art smartphone applications and platforms
that extract acoustic features are primarily of two kinds.
The first kind records the audio and sends it to a remote
server over the Internet for further processing. This method
has several limitations such as the requirement for an un-
interrupted Internet connectivity and high bandwidth, and
the associated expense of sending a large chunk of audio
data over the cellular network. The second kind, on the
other hand, performs the entire signal processing task inside
the phone. But the limitation of this approach is that in
order for fast and real-time feature extractions, they must
limit the sampling rate to the minimum. For example –
SpeakerSense [14] and SoundSense [15] limit their maximum
sampling rate to 8 KHz. Hence, the quality of sampled
speech suffers from the aliasing problem and the extracted
features are often of low quality [2]. Although a sampling
rate of 8 KHz satisfies the Nyquist criteria for human speech
(300−3300 Hz), practically the higher the sampling rate the
better it is in producing high quality samples. Furthermore,
for non-speech acoustic analysis, a sampling rate of 44.1 KHz
is required to capture the range of frequencies in human
hearing (20 − 20000 Hz). But the problem is – there is no
efficient algorithm that extracts frequency domain acoustic
features inside the phone in real-time at such high sampling
rates.

In this paper, we propose a novel solution to this problem
which enables the extraction of frequency domain acoustic
features inside a smartphone in real-time, without requiring
any support from a remote server even when the sampling
rate is as high as 44.1 KHz. We are inspired by a recent
work [9, 8] coined sparse Fast Fourier Transform (sFFT) –
which is a probabilistic algorithm for obtaining the Fourier
Transformation of time-domain signals that are sparse in the
frequency domain. The algorithm is faster than the fastest
Fourier Transformation algorithm under certain conditions.
Our goal in this paper is to analyze the feasibility of applying
the sFFT to extract a highly accurate and sparse approxi-
mation of a widely used feature for speech, called the Mel-
Frequency Cepstral Coefficients (MFCC) on the phone. Be-
sides speech recognition, MFCC features are widely used in
many other problems such as speaker identification [19], au-
dio similarity measure [10], music information retrieval [13],



and music genre classification. However, we limit our scope
in this work to speech data only.

We perform an empirical study involving 10 participants
(5 male and 5 female participants) where we collect more
than 350 utterances of speech per person, recorded at differ-
ent sampling rates. In our study, we quantify the sparseness
of speech and show that human voice is suitable for apply-
ing sFFT to compute frequency domain acoustic features
efficiently. We analyze the sensitivity of sFFT in approxi-
mating MFCC, and based on this, we design an algorithm
to efficiently extract MFCC features using the sFFT instead
of the traditional FFT. We name this new feature the sparse
MFCC or sMFCC, in short. We experimentally determine
the trade-offs between the approximation error and the ex-
pected speedup of sMFCC.

As a proof of concept, we implement a simple spoken word
recognition application using both MFCC and sMFCC fea-
tures and compare their accuracy and expected running time
on our collected data. As the research is still in progress, we
only implement the MFCC feature extraction on the smart-
phone while the rest of the analysis done on a PC. In future,
we plan to complete the porting of the entire app to the
smartphone. We also plan to explore other types of appli-
cations that require general purpose acoustic feature extrac-
tion on smartphones. The main contributions of this paper
are:
• A study on 10 smartphone users to quantify the sparse-

ness of speech data recorded on smartphones and to an-
alyze the feasibility of using sFFT for frequency domain
feature extraction.

• We describe an efficient algorithm for computing a highly
accurate and sparse approximation of MFCC features
which exploits the sparseness in speech.

• We implement a simple spoken word recognition applica-
tion using both MFCC and sMFCC features, show that
sMFCC is expected to be upto 5.84 times faster and its
accuracy is within 1.1% − 3.9% of that of MFCC, and
determine the conditions under which sMFCC runs in
real-time.

2. BACKGROUND

2.1 Mel-Frequency Cepstral Coefficients
The Mel-Frequency Cestrum Coefficients (MFCC) is one

of the most popular short-term, frequency domain acous-
tic features of speech signals [4]. The MFCC have been
widely used in speech analysis because of their compact rep-
resentation (typically, each speech frame is represented by
a 39-element vector), close resemblance to how human ear
responds to different sound frequencies, and their less sus-
ceptibility to environmental noise.

The MFCC feature extraction starts with the estimation
of power spectrum which is obtained by taking the square of
the absolute values of the FFT coefficients. However, prior
to computing the power spectrum, typically each speech
frame passes through a pre-emphasis filter which is followed
by a windowing process. The log-power spectrum is used
instead of the power-spectrum as human hearing works in
decibel scales. The log-power spectrum then goes through
a filtering process. A filter-bank with around 20 triangu-
lar band-pass filters is applied to reduce the dimensionality.
These filters follow a Mel-scale which is linear up to 1 KHz

and logarithmic for the larger frequencies – resembling hu-
man hearing. Finally, a discrete cosine transform (DCT)
is performed to compress the information and to make the
vectors uncorrelated. Only the lower-order coefficients (typi-
cally 13) are used and the rest are discarded. The 13-MFCCs
plus the deltas and double deltas constitute a 39-element
feature vector for each speech frame.

2.2 Sparse Fast Fourier Transform
The discrete Fourier transform (DFT) is one of the most

significant algorithms in the digital signal processing do-
main. The fastest algorithm that computes DFT of an n-
dimensional signal is O(n logn)-time. However, a recent al-
gorithm [9, 8] coined sparse FFT (sFFT) has broken this
bound for a special case of DFT where the signals are sparse.
A signal is considered sparse if most of its Fourier coeffi-
cients are small or very close to zero. For a small number k
of non-zero Fourier coefficients, sFFT computes the Fourier
transformation in O(k logn)-time.

The basic idea of sFFT is to hash the Fourier coefficients
into a small number of bins. The signal being sparse in the
frequency domain, it is less likely that each bin will have
more than one large coefficient. The binning process is done
in O(B logn) where B is the number of bins – by at first
permuting the time-domain signals and then filtering them.
Each bin at this point ideally has only one large Fourier co-
efficient, and only such ‘lonely’ coefficients are taken into the
solution. The process is repeated Θ(log k) times, each time
varying the bin size B = k/2r where the integer r ∈ [0, log k],
so that all k coefficients are obtained. The overall running
time of the algorithm is dominated by the first iteration, and
hence the time complexity is O(k logn). The algorithm is
probabilistic, but for exact k-sparse signals (i.e. at most k
of the coefficients are significant), the algorithm is optimal,

as long as k = nΩ(1).

3. MOTIVATION
Smartphones allow a fixed number of sampling rates to

capture raw audio signals from the microphone. Ideally the
choice of an appropriate sampling rate should be driven by
the application’s QoS requirements. But often the develop-
ers are forced to choose a lower sampling rate than the de-
sired one due to the limited processing power of the device.
For example, in general-purpose acoustic processing, a 44.1
KHz Nyquist sampling rate is required to capture the range
of frequencies in human hearing (20 − 20000 Hz). Even in
speech processing problems, oversampling at 16 KHz helps
avoid aliasing, improves resolution and reduces noise [23].
But at higher sampling rates, the real-time performance of
the smartphone gets worse and the developers are forced to
select the minimum rate compromising the quality of sam-
pled speech.

Figure 1 compares the time to compute MFCC feature
vectors from audio records of different durations at 3 differ-
ent sampling rates. The experiment is done on a Nexus S
smartphone running Android 2.3 that supports 8 KHz, 22.05
KHz, and 44.1 KHz sampling rates. We see that, the time to
compute MFCC features is always longer than the duration
of the recorded audio when the sampling rate is higher than
8 KHz. For example, the computation of MFCC vectors of
a 4-second recording takes on average 7.02 s at 22.05 KHz,
and 11.85 s at 44.1 KHz. Therefore, at these higher rates,
the application is not capable of real-time performance.
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Figure 1: The MFCC computation time is 2−4 times
longer than the audio clip length when the sampling
rate is high.

Our goal is therefore to investigate the problem: whether
or not it is possible to compute MFCC feature vectors in
real-time on a smartphone when the data rate is high? In
an attempt to answer this question, we study the nature of
human speech recorded on a smartphone. We hypothesize
that the sparseness in speech can be exploited to compute
a close approximation of MFCC feature vectors on a smart-
phone in real-time. While the focus of this work is on speech,
an analysis of the general-purpose acoustic signals based on
similar principles is under investigation and we leave it as
our future work.

4. THE SPARSE MFCC ALGORITHM
The idea of sparse MFCC algorithm is to compute a sparse

approximation of MFCC features from a given frame of dis-
crete time-domain signals xn of length n. The algorithm
uses a modified version of sFFT as a subroutine. We de-
note the new feature by sMFCC to signify its relation to
sFFT. Like the sFFT to FFT, sMFCC is an approximation
to MFCC, where the approximation error is defined by,

error(k) = 1− ˆMFCC · ˆsMFCC(k) (1)

where, ˆMFCC and ˆsMFCC(k) are unit vectors, and
their scalar product is subtracted from unity to obtain the
approximation error. sMFCC is expressed as a function of
the sparseness parameter k, which is one of the key param-
eters to the sFFT algorithm. The following two sections
describe the sMFCC extraction algorithm in detail.

4.1 Estimation of Sparseness
Since the value of k is a key input to the sFFT algorithm

and sFFT is used in our computation, the first step of sM-
FCC algorithm is to find the optimum value of k, denoted
by k∗, for which the MFCC approximation error is within a
small, non-negative threshold δ, i.e.,

k∗ = min
error(k)<δ

k (2)

In order to obtain k∗, we first compute the MFCC using
the standard FFT algorithm which runs in O(n logn). We
then perform an iterative O(n) search for k ∈ [1, n] until we
find the optimum k∗. The computation of sMFCC(k), for
k ∈ [1, n], is optimized by precomputation. We precompute
the FFT, keep the FFT coefficients sorted in non-increasing
order, and take only the largest k coefficients while making
other coefficients zero – while computing sMFCC(k). Note

that, this step of our algorithm does not use sFFT and runs
in O(n logn). The shape of the function error(k) (Figure 4
in Section 6.2) however suggests that, instead of a linear
search over all values of k, we could expedite the process
with a binary search. However, k is estimated once per
utterance, i.e. using the first 5−10 frames once voice activity
is detected, and hence the amortized cost of this step is not
significant.

4.2 Computing sMFCC
Once we obtain the sparsity parameter k, we compute the

sMFCC for each frame in 3 steps which we describe next.
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Figure 2: The computational tasks involved in the
sMFCC feature extraction process is shown.

Pre-processing: The time-domain signals are first passed
through a high-pass pre-emphasis filter (Eq. 3) to amplify
the high-frequency formants that are suppressed in speech.
We then segment the signals into frames of 64 ms with an
overlap of 1/3 of the frame size. A hamming window (Eq.
4) is applied to each frame to ensure the continuity between
the first and last points which is required for FFT.

x[i] = x[i]− 0.95× x[i− 1] (3)

hamm(i) = 0.54− 0.46 cos(
2πi

n− 1
) (4)

MFCC: We modify the sFFT algorithm to fit into our
algorithm. Recall that, sFFT tries to extract k Fourier co-
efficients in log k iterations to guarantee the retrieval of all
k coefficients. However, in our experience, sFFT returns
most (at least 75%) of the k coefficients in a single itera-
tion. We, therefore, modify the sFFT by running it for only
a single iteration with a slightly larger sparseness parame-
ter of k = min(n, d4k∗/3e) to speed up the process. Once
the Fourier coefficients are obtained, we follow the standard
procedure of MFCC [5]. We apply 20 triangular band-pass
filters (called Mel-banking) to obtain 20 log energy terms,
perform a DCT to compress them, and take the first 13 co-
efficients to constitute a 13-element sMFCC vector M .

Post-processing: The 13-element sMFCC vector is aug-
mented to include the delta and double delta cepstrums to
add dynamic information into the feature vector, and thus
we obtain a 39-element feature vector.The deltas ∆ and dou-
ble deltas ∆2 are computed using the following two equa-
tions,

∆i = Mi+2 −Mi−2 (5)

∆2
i = Mi+3 −Mi−1 −Mi+1 +Mi−3 (6)



5. EXPERIMENTAL SETUP
We perform an empirical study involving 10 volunteers, in

which, we record their speech using a smartphone in home
environments. Each participant was given a list of 86 En-
glish words and a paragraph from a book. The wordlist
includes 10 digits, 26 characters of the English alphabet, 25
mono-syllable and 25 poly-syllable words. Participants were
asked to utter each word 4-times – clearly and at regular
pace. There were about a 2-second gap between two spo-
ken words so that we could extract and model each word
separately. The group of participants is comprised of under-
graduate and graduate students, researchers, professionals,
and their family members. Their ages are in the range of
20− 60, and they have diversities in speaking style and eth-
nicity. The smartphone we used during the data collection is
a Nexus S phone running Android 2.3.6 OS. It has a 1 GHz
Cortex A8 processor, 512 MB RAM, 1 GB internal storage,
and 13.31 GB USB storage. The execution time of MFCC
is measured on the smartphone using Android’s API, and
speedup of sMFCC is the ratio of running times of MFCC
and sMFCC.

6. EXPERIMENTAL RESULTS
We conduct four sets of experiments. First, we quantify

the sparseness of speech in our empirical dataset. Second,
we show the approximation error in sMFCC. Third, we es-
tablish the condition for speedup in sMFCC. Finally, we
describe a simple spoken word recognizer to quantify the
cost and benefits of sMFCC over MFCC.

6.1 Sparseness in Speech
The sparseness of signal is defined by the number of neg-

ligible Fourier coefficients in its spectrum. A coefficient is
considered negligible if it contains a very small amount of
signal power. Sparseness in audio signals depends on the
audio type. In this paper, we study clean speech signals
only.
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Figure 3: 98.07% of the Fourier coefficients in our
dataset contains only 3% or less power.

Figure 3 shows the cumulative distribution function (CDF)
of power in the Fourier spectrum of the utterances in our
dataset. To obtain this plot, we compute the FFT of all
the utterances in our dataset, take the squared magnitude
of FFT to obtain the signal power, construct a 100-bin his-
togram where each bin corresponds to a range of powers,
compute the fraction of Fourier coefficients that are in each
bin, and compute the CDF. Each point on the plot tells us,
what fraction of the signals have power less than or equal to
the range corresponding to the X-coordinate. For example,
the marked point on the plot denotes that 98.07% of the

Fourier coefficients in each utterance of our dataset contains
only 3% or less power. The rest 1.93% coefficients that are
significant are permuted (see [9, 8] for the details) in the
frequency domain so that the spectrum becomes extremely
sparse and ideal for the application of sFFT.

6.2 Sparse Approximation Error in sMFCC
The quality of sMFCC features depends on the choice of

an appropriate k. The larger the value of k, the closer it
is in approximating MFCC. In this experiment, we analyze
the sensitivity of k to the MFCC approximation error.
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Figure 4: The higher the value of k, the better ap-
proximation of MFCC we get.

Figure 4 shows the approximation error for the range of
sparseness k ∈ [0.00625, 0.125]. We consider this range since
it contains most of the significant Fourier coefficients and is
also important for the discussion of speedup in Section 6.3.
Each point on the plot corresponds to the mean approxima-
tion error of sMFCC for a given k, where the mean is taken
over all 64 ms frames in all the utterances in our dataset.
The frame size is n = 4096 samples, which is the next power
of 2 that holds a 64 ms frame at 44.1 KHz. This figure guides
us in choosing the parameter k in our sMFCC computation
algorithm if we want to keep the MFCC approximation er-
ror below a desired threshold. A very close approximation
(< 1% error) is possible by choosing k/n = 0.2 or higher.
However, such close approximation may not be required in
an actual application which we will see in Section 6.4.1. The
reason is that human speech being sparse, even at a smaller
k/n ratio, the absolute value of approximation error is not
high.

6.3 Speedup in sMFCC
Sparseness in speech is the source of expected speedup

in sFFT and hence in sMFCC as well. Figure 5 shows
the speedup in sMFCC for the range of sparseness k ∈
[0.00625, 0.125]. We observe the maximum speedup of 5.84
when the sparsity parameter is at its minimum. As we con-
sider more and more FFT coefficients while computing sM-
FCC, the speedup decreases and after k/n = 6.769% the
regular MFCC becomes faster than its sparse counterpart.
This limitation comes from the fundamental bound of sFFT,
which says, sFFT is faster than FFT when k/n < 3% [8].
However, our modified version of sFFT is faster for the rea-
son we discussed earlier in Section 4.2, and hence we have a
larger bound of 6.796%.

6.4 A Simple Spoken Word Recognizer
The goal of this experiment is to analyze the tradeoff be-

tween the accuracy and expected speedup of sMFCC fea-
tures in an application scenario. To do so, we implement a
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Figure 5: sMFCC has a better running time than
MFCC as long as the sparseness k/n < 6.769%.

simple spoken word recognizer that is essentially a speech-
to-text program for a single word from a fixed vocabulary.
The recognizer consists of two parts: a smartphone app and
a word recognizer running on a PC. The word recognizer
running on a PC is for proof of concept, our envisioned use-
case is however to run it on the phone.

At first, the user turns on the application on the phone and
presses the ‘speak now’ button. The smartphone then starts
sampling the microphone at 44.1 KHz and keeps producing
speech frames until the user presses the ‘stop’ button. Each
frame goes through the MFCC feature extraction process
which happens in real-time. Each spoken word produces a
number of frames, and a 39-element MFCC feature vector is
obtained for each frame. We take the mean and the standard
deviation of each of the 39 MFCC coefficients over all frames
to obtain a single 78-element feature vector which is used in
the classification step. The feature vectors are then sent to a
PC for classification and further analysis. The ground truth
is obtained by taking notes manually. We train a Support
Vector Machine (SVM) classifier in order to recognize the
words. A 3-fold cross validation is used to determine the
accuracy of the classifier where 75% of each user’s data is
taken for training and the rest is used for validation.

6.4.1 Accuracy
We compare the accuracy of the sMFCC-based SVM clas-

sifier with that of the MFCC-based one. The baseline MFCC-
based classifier is essentially a special case of sMFCC-based
one with a sparseness k/n = 1, and has a recognition accu-
racy of 85.85%. Figure 6 compares the recognition accuracy
of sMFCC-based classifier to the baseline for the same range
of k/n we have been using throughout the paper. We ob-
serve that, the accuracy of sMFCC-based classifier is initially
3.9% lower than the baseline, and the two accuracies be-
comes practically identical once k/n reaches 0.12. However,
from the discussion in Section 6.3 we know that, sMFCC
runs faster than MFCC only when the k/n ratio is within
the 6.679% bound. For this boundary case, sMFCC shows
an accuracy of 84.75%, which is only 1.1% lower than the
baseline. In summary, with sMFCC-based classifier for our
simple word recognition problem, we can achieve a faster
running time than the baseline with a very small (1.1%-
3.9%) sacrifice in recognition accuracy.

6.4.2 Computation Time
The MFCC feature extraction process runs once per spo-

ken word. Hence, the execution time depends on the dura-
tion of the spoken word which varies from person-to-person
and from word-to-word. In our dataset, the duration of
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Figure 6: The recognition accuracy of sMFCC-based
classifier is within 1.1% − 3.9% of the MFCC-based
one inside the speedup zone.

speech ranges from the minimum of 400 ms to the maxi-
mum of 2.88 s. We, therefore, compute the expected feature
extraction time E[φfeat(di)] using the following equation,

E[φfeat(di)] =
∑

fi × φfeat(di) (7)

where, di is the duration of speech, fi is the frequency
of utterances with duration di, and φfeat(di) is the feature
extraction time (either MFCC or sMFCC).
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Figure 7: The sMFCC feature extraction algorithm
runs in real-time as long as k/n < 4.835%.

Figure 7 shows the mean speech duration and the expected
computation times of MFCC and sMFCC feature extrac-
tion process. We see that, the expected MFCC computation
time is 4.21 s, which is about 2 times higher than the du-
ration of speech (2.11 s). On the other hand, the expected
computation time for sMFCC varies with k/n: it increases
as k/n increases, is lower than the duration of speech as
long as k/n < 4.835%, and crosses the MFCC computation
time when k/n reaches the speedup limit of 6.679%. Hence,
applications that require fast and real-time feature extrac-
tion should set the k parameter such that k/n is below the
real-time limit of 4.835%. At this limit, the accuracy of
the sMFCC-based word recognizer is 83.97%, which is only
1.88% lower than the accuracy of the baseline MFCC-based
classifier.

Discussion: We show the tradeoff between accuracy and
speedup for single word recognition problem from a limited
vocabulary. The developer of the app should decide what
k/n value to pick for his application. For different apps, the
most suitable value of k/n will be different, and need to be
chosen from a similar tradeoff curve.

7. RELATED WORK
Sparseness in data is exploited in many application do-

mains such as learning decision trees [12], compressed sens-



ing [6], analysis of Boolean functions [21], large scale time
series data analysis [18], similarity search [1], and homoge-
neous multi-scale problems [3]. In our work, we perform an
empirical study on the sparseness in speech data collected
on smartphones with the goal of exploiting the sparseness
to expedite the MFCC feature computation.

MFCC is a widely used feature for analyzing acoustic sig-
nals [5, 17, 19, 13, 10]. MFCC is used for spoken word recog-
nition [5], voice recognition [17], speaker identification [19],
music modeling [13], and music similarity measure [10]. [7]
presents a nice comparison of different MFCC implementa-
tions. However, in our work, we introduce a sparse MFCC
(sMFCC) which is a sparse approximation of MFCC and is
efficient to extract.

Comparison of several speech recognition techniques on
mobile devices are described in [11]. [14] performs speaker
identification, [15] classifies sound into voice, music or am-
bient sound, and [16] classifies conversion. But all of these
applications limit their sampling rate to its minimum. [20]
uses a high sampling rate to extract heart beats from acous-
tic signal, but the system is not fully real-time. In this work,
we analyze the feasibility of using sMFCC features that is
expected to run in real-time and at higher data rates.

8. CONCLUSION AND FUTURE WORK
In this work, we propose an algorithm that exploits sparse-

ness in speech to extract a highly accurate and sparse ap-
proximation of MFCC features (sMFCC) efficiently inside a
smartphone in real-time when the sampling rate is as high as
44.1 KHz. We implement a simple spoken word recognition
application using both MFCC and sMFCC features, show
that sMFCC is upto 5.84 times faster than MFCC and its
accuracy is within 1.1%−3.9% of that of MFCC, and deter-
mine the conditions under which sMFCC runs in real-time.

Our future work includes three main directions. First, we
plan to improve our empirical study by adding more partici-
pants, investigating the continuous speech recognition prob-
lem rather than just single word recognition, incorporating
more complex classifiers, and considering background noise.
Second, we plan to complete porting the entire application
to the smartphone which includes on-line training and clas-
sification modules. Third, we plan to explore other types of
sounds such as music and environmental sounds, and other
acoustic features.
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ABSTRACT
Mobile crowdsensing is becoming a vital technique for envi-
ronment monitoring, infrastructure management, and social
computing. However, deploying mobile crowdsensing appli-
cations in large-scale environments is not a trivial task. It
creates a tremendous burden on application developers as
well as mobile users. In this paper we try to reveal the
barriers hampering the scale-up of mobile crowdsensing ap-
plications, and to offer our initial thoughts on the potential
solutions to lowering the barriers.

1. INTRODUCTION
In recent years, there has been phenomenal growth in the

richness and diversity of sensors on smartphones. It is now
common to find two cameras, a GPS module, an accelerom-
eter, a digital compass, a gyroscope and a light sensor in a
single smartphone. And there is more to come! The rich
information about the smartphone user’s activity and envi-
ronment provided by these sensors inspired the first wave of
sensing applications that personalized user experience based
on the sensed context. Now, a second wave of mobile sensing
applications is gaining momentum. The focus has shifted
from individual sensing towards crowdsensing, defined as
“individuals with sensing and computing devices collectively
sharing information to measure and map phenoma of com-
mon interest” [10]. Initially, crowdsensed inputs were ana-
lyzed offline, for example in the analysis of transportation
activities in urban spaces [34], for the measurement of inter-
person similarity [14], or for mental and physical health as-
sessment of elder people [23]. In more recent crowdsensing
applications, the collected inputs are processed in real time.
Examples include traffic monitoring [35, 36], public safety
management [27], and collaborative searching [31].

A hypothetical use case serves to illustrate the potential
benefits of crowdsensing using information-rich multimedia
sensors and some potential pitfalls [25]. Imagine that a small
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child gets lost while watching a parade in the middle of a
large city. The distraught parents, upon noticing their child
is missing, immediately use their smartphone to initiate a
search, providing sample images with their child’s face. A
crowdsensing search application tries to match these with
the videos and images being captured by the many smart-
phone cameras in the crowd. Any potential matches are
forwarded to the parents’ phone, along with GPS location
information. With thousands of electronic eyes applied to
this problem, the child is quickly found, before she herself
is even aware of being lost. For this use case, the large
number of smartphone cameras in use makes it likely the
child appears in one or more captured images; however, the
crowdsensing search application itself can succeed only if a
sufficiently large number of smartphone users participate.

More generally, there is a growing realization that scale is
the key to the success of crowdsensing applications. Since in-
dividual users may go offline and individual sensor readings
may be inaccurate or corrupted, the reliability and trustwor-
thiness of crowdsensing applications scales more than pro-
portionally with the number of users. Access to a vast user
base is thus crucial. However, our survey of the literature
shows that today’s mobile crowdsensing applications using
physical sensors like GPS have rarely been scaled up to more
than 1,000 participants.

Table 1 shows a representative sample of crowdsensing
studies. Much to our surprise, the number of participants is
often omitted in the papers reporting these studies. When
concrete numbers are provided, the crowd sizes are usually
small. It is only with data sources that are easy to collect
(e.g. from social networking applications such as Twitter)
that larger crowds have been studied. The one notable ex-
ception is the work of Balan et al [2], discussed in Section 2.

What limits the scaling of crowdsensing applications? In
this paper, we explore this issue and and propose an archi-
tectural solution. We then explore the merits of this archi-
tecture, and discuss potential implementation challenges.

2. OBSTACLES TO CROWD SCALING
Crowdsensing applications, including the ones that exist

today and the emerging class of applications making use
of richer multimedia sensors, face three major barriers to
achieving the large crowd sizes critical to their success.

The first obstacle is the heterogeneity of sensing hard-
ware and mobile platforms. In today’s mobile device market,
there are at least three popular software platforms, includ-



Reference Mobile Platform Application Category Crowd Size Input
Zhou et al. [35] (Mobisys 2012) Android Transportation unknown cell tower ID, audio signal

accelerometer
Tiramisu [36] (CHI 2011) iOS Transportation 28 GPS

SignalGuru [12] (MobiSys 2011) iOS Transportation 13 video frames
Balan et al. [2](Mobisys 2011) Car GPS Transportation 15000 GPS

Mathur et al. [16] (Mobisys 2010) Car GPS Transportation 500 GPS
Niu et al. [20] (Com.geo 2011) Blackberry Transportation unknown GPS
Bao et al. [3] (Mobisys 2010) Symbian, iPod Social Application unknown video
Wirz et al. [30] (SCI 2011) Android Social Application unknown GPS

CrowdSearch [31] (Mobisys 2010) iOS Search unknown image
GeoLife [34] (WWW 2009) GPS phones User Behavior Study 107 GPS

SoundSense [15] (Mobisys 2009) iOS User Behavior Study unknown audio stream
#EpicPlay [28] (CHI 2012) Twitter Social Application unknown tweets

Wakamiya et al. [29] (ICUIMC 2012) Twitter User Behavior Study 39898 tweets
Fujisaka et al. [9](ICUIMC 2012) Twitter User Behavior Study 8139 tweets
CrowdSearcher [5] (WWW 2012) Facebook Search 137 text

Table 1: Representative Sample of Crowd-sensing Applications

ing Android, iOS and Windows 8. Applications written for
any of these can not be run on the others. Even different
versions of a particular platform are sometimes incompati-
ble, due to changes in hardware or evolution of the software
APIs. Furthermore, the Apps model in vogue today, along
with the relatively low processing power of mobile devices,
has encouraged smaller, stand-alone applications, and dis-
couraged the development of external libraries, middleware,
and virtualization techniques to bridge the differences be-
tween platforms. There is no sign that a single platform will
dominate this fragmented market in near future. For true
ubiquity, application developers need to write, test, support,
and maintain versions of their applications for all of these
platforms. In a sense, the complexity of the crowdsensing
application space grows with cross product of the number of
platforms and the number of applications.

This issue of heterogeneity is underscored by the experi-
ence of Balan et al. [2], who conducted one of the largest
crowdsensing studies to date. It took them six months to
deploy one version of their GPS-based crowdsensing applica-
tion on 15,000 taxis in Singapore, mainly due to the hetero-
geneity of the on-car GPS devices provided by different ven-
dors. Web-based applications implemented in HTML5 are
sometimes put forward as a “write once, run everywhere” al-
ternative. Unfortunately, the HTML5 sensor APIs available
on mobile browsers are still quite limited and the support
for different sensors varies from browser to browser and from
platform to platform. While geolocation tracking using GPS
is widely supported in the up-to-date mobile browsers, ac-
cessing the microphone and video cameras is not possible in
most cases [17]. In practice, due to the potential incompat-
ibility between browsers (e.g. the inconsistent support for
audio and video codecs), developers still have to customize
their code for different browsers in some cases.

The second obstacle is the burden today’s crowdsensing
applications place on users. Today, each user must install a
separate proprietary application for every crowdsensed ex-
periment in which s/he wishes to participate. As a result,
the deployment of a single crowdsensing application is lim-
ited by the rate at which users adopt and install it on their
devices. It can take weeks or months for a newly introduced
application to reach the critcial mass of participants needed

for it to be useful. Rapid, large-scale deployment, as in the
lost child usage scenario above, is impossible with an install-
based deployment model. Users also have to be tolerant
of the processing, memory, and battery life these applica-
tions consume. Because today’s mobile operating systems
are designed to shield applications from each other, each
application is meant to be self-contained and does not share
information with others. In addition, some sensors, such as
cameras, need to be exclusively locked before use. Partici-
pating in more than one crowdsensing application at a time
is therefore not easy, even if a user is positively inclined.

The third obstacle, which primarily affects future appli-
cations, is the increasing network bandwidth demands of
emerging crowdsensing applications. Table 1 shows that
the GPS data has been the most widely used sensing in-
formation in the existing crowdsensing applications. How-
ever, looking ahead, we envision growing use of data-rich,
multimedia sensing information like video [1] in emerging
applications such as augmented reality, or the video-based
lost child locator discussed above. These applications not
only demand far more computing power, but also far more
network bandwidth to send data to the cloud infrastructure.
Based on data rate analysis of 80 videos on YouTube cap-
tured from a first-person viewpoint, each participant in a
video-based crowdsensing application will upload between
0.6 Mbps (360p resolution) and 5.6 Mbps (1080p resolu-
tion). With many users, such an application can easily over-
whelm link capacity in regional networks and into datacen-
ters. For example, Verizon recently introduced state-of-the-
art 100 Gbps links in their metro networks [21], yet these are
only capable of supporting 1080p streams from just 18000
users. A broadly-deployed application with 1 million users
will require 1–2 Tbps, 200x the total upload bandwidth of
all YouTube contributors [33] today. An application model
where each device sends data to centralized servers (as is
typical today) cannot scale to support data-rich sensors. En-
suring the scalability of crowdsensing with data-rich sensors
requires rethinking application and cloud architectures to
acquire, process, and aggregate such data efficiently.

Ultimately, all three of these obstacles are ramifications of
the deployment model in vogue today, where participation
in each crowdsensing activity requires a separate application
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that must be installed and run on user devices, and directly
communicates to central servers. To overcome these obsta-
cles, we must rethink the structure and deployment model
used in crowdsensing applications.

3. PROPOSED SOLUTION
We propose a crowdsensing deployment model built around

3 core design principles:

• separation of data collection and sharing from application-
specific logic.

• removal of application installation on smartphones from
the critical path of application deployment.

• decentralization of processing, and data aggregation
near the source of data.

These design principles address the obstacles discussed above.
By construction, our proposed solution overcomes the key
barriers to scaling up crowdsensing applications.

3.1 System Architecture
The 3-tier system architecture of our deployment model

is illustrated in Fig. 1. The first layer is composed of mobile
devices, whose roles are essentially reduced to that of (multi-
input) sensors forwarding captured data to proxy VMs in
the second layer. The second layer comprises of distributed
cloud infrastructure deployed close to the mobile devices,
typically in the access or aggregation network of Wi-Fi or
cellular network providers. The concept of distributed cloud
infrastructure here is akin to the concept of cloudlet pre-
sented in [26]. In practice, this can be a private cloud owned
by a business or community, or a small data center such as
Myoonet’s Micro data center [18] that is deployed by a cloud
operator. For the sake of simplicity, we will refer to this dis-
tributed cloud infrastructure as cloudlets in the remainder
of this paper.

Each proxy VM is associated with a single mobile device,
and is kept physically close to the mobile device through VM
migration to other cloudlets or public clouds. This ensures
network resources to transfer data from the mobile device is
minimized. The proxy VM handles all the requests for sensor
data on behalf of the mobile device. On the mobile device,

a single application is responsible for collecting sensor data
and communicating it to the proxy VM. This application can
be either implemented as a native application, or -if a good
mobile browser is available on the device- as a HTML5 web
application. The proxy VM is essentially an extension of
the mobile device into the cloudlet, and can perform custom
data preprocessing, e.g., to enforce privacy settings or handle
quirks of the mobile platform, and enforce user preferences
on data sharing and crowd participation. From here, data
is forwarded to one or more application VMs also running
on the cloudlet infrastructure.

Application VMs perform data processing steps specific
to each crowdsensing application. Each application VM
hosts a single crowdsensing application, which is not cus-
tomized to any particular mobile platform. Generally, for
each crowdsensing activity, one application VM is assigned
to each participant, making it easy to migrate a user’s proxy
VM together with the associated application VMs, preserv-
ing any hard state they may contain. If an application does
not need to maintain hard state for each user, then a single
application VM can be shared by all users on a particular
cloudlet.

The application VMs for each sensing service are deployed
by a coordinating entity on the highest layer in our archi-
tecture, typically by the application server running on the
centralized cloud infrastructure. In practice, when many
application VMs are run on each cloudlet, the application
server can initiate a master application VM (MAVM) on
each cloudlet and delegate management and data aggrega-
tion tasks. The MAVM will coordinate, clone, and config-
ure the application VMs on the cloudlet, and aggregate data
within the cloudlet before forwarding results. Depending on
the application, the MAVMs on multiple cloudlets may form
a peer-to-peer overlay network / tree to scalably aggregate
data to the central application server.

Our deployment model is predicated on two assumptions.
First, this architecture depends on distributed cloud infras-
tructure near the user. The vision of executing customized
VMs on nearby infrastructure has been articulated many
times, e.g. in [8] and [11]. It has also be argued that of-
floading to nearby computing infrastructure (cyber foraging)
is needed for compute-intensive and latency-sensitive mobile
applications [4] for the purpose of energy savings and latency
reduction. Our concept of distributed cloud infrastructure
to host proxy and application VMs fits perfectly in this vi-
sion.

Second, our approach assumes a standard API exists for
the data transfer between the proxy VM and the associated
application VMs. However, we argue this is a much eas-
ier task to accomplish than having to write an individual
application for each mobile platform (and possibly for each
individual version of the mobile platform). Indeed, the out-
put of scalar sensors can be represented as a few integers
(e.g. GPS coordinates, temperature value, ...), and stan-
dards for multimedia data (e.g., video formats) already ex-
ist. Combining such data with standardized XML format
descriptions, one can establish a standard for communica-
tion between proxy VMs and application VMs. In fact, sev-
eral programming frameworks for crowdsensing applications
have proposed solutions to abstract sensing information [32,
24] and task description [22]. These programming frame-
works can be leveraged in our model as well.
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Figure 2: Workflow of crowd bootstrap.

3.2 Crowd Bootstrap
Let’s revisit the lost child scenario from Section 1 to see

how a crowdsensing task can be rapidly bootstrapped using
our deployment model. As shown in Fig. 2, the process of
crowd bootstrap can be summarized in the following seven
steps.

1. The task generator (here, it is the parents’ smart-
phone) constructs and sends a task description to the
application server, typically located in the public cloud.
The actual format of this can be application-specific,
but is shown as an XML snippet here. The critical
information includes type of search (face detection),
the sample images, and a location area to scope the
search. How this description is constructed and com-
municated is also left to the application, e.g., with a
front-end app on the phone, or through a web-form on
the application server.

2. The application server parses the task description, and
consults a global registry for a list of cloudlets that are
located in the target area.

3. The application server contacts the cloudlet daemon
on each target-area cloudlet, and requests a MAVM in-
stance be created. It forwards the VM disk image and
memory snapshot to launch the MAVM. In practice,
techniques employing demand paging or VM synthesis
can minimize overheads of launching the MAVM.

4. The MAVM on each target cloudlet uses a cloudlet-
local registry to discover proxy VMs connected to de-
vices that can provide the desired sensor data (here,
videos and images).

5. The MAVM requests participation from the mobile
users through the proxy VMs. Depending on user-
defined policies, the proxy may require explicit permis-
sion from the user, or the proxy VM can automatically
join crowds on behalf of the user when particular cri-
teria are met (e.g., share video when in a public space,
but not audio).

6. Once permission is granted, the MAVM will request
the cloudlet daemon to create application VMs. In

practice, these can simply be clones of the MAVM,
operating in a different mode.

7. The MAVM configures the networking setup of the ap-
plication VMs, while the the proxy VM will add the
new application VM to the subscriber list.

When the above steps are finished, the proxy VMs will
start forwarding images and videos to the application VMs,
which will apply face detection and forward potential matches
through the MAVM and application server to the parents’
smartphone. We believe our architecture has the potential
to bootstrap large crowds in just a matter of minutes, mak-
ing this on-demand crowdsensing use case possible.

3.3 Benefits of Our Design
Our deployment model is architected to support scalable,

efficient data sharing between multiple applications and users,
while reducing the burden on application developers and end
users. It scales up crowdsensing tasks by making it easier to
access data from a larger pool of diverse smartphones, allow
users to simultaneously particpate in multiple applications,
and support rich, high-data-rate sensors at global scale.

Separating the process of data collection and sharing from
application-specific processing, our system lets developers
focus on the latter, rather than porting their application to
a myriad of mobile platforms and understanding the idiosyn-
chrasies of each. In fact, our deployment model increases the
choices in programming languages, as the application is self-
contained in its application VM and does not have to meet
specific compatibility constraints for mobile platforms. Sim-
ilarly, the developer is free to use a variety of programming
models to distribute computation and aggregate results, and
not forced to use a one-size-fits-all paradigm. Deploying
VMs to users boils down to rapid cloning of the application
VMs on cloudlets, regardless of the mobile devices.

In our architecture the personal data of the users is stored
and processed on their own proxy VMs. According to [7] this
approach provides a higher degree of privacy if compared to
the traditional approach of storing and processing the data
using centralized third party services. Our framework also
allows flexibility in partitioning work between the proxy VM
and mobile device. For example, supporting multiple appli-
cations with differing fidelity or resolution requirements si-
multaneously will entail some amount of preprocessing; this
can be done in the proxy VM, mobile device, or a combina-
tion of both depending on hardware capabilities, processing
overheads, and energy availability.

Our approach reduces the burden on users and their mo-
bile devices for participating crowdsensing. First, instead of
installing individual apps on their devices for each crowd-
sensing application, users only need to install one app that
allows users to participate in different crowdsensing applica-
tions. Users can join a crowd by simply granting permission,
and if willing, can direct their proxies to automatically par-
ticipate in some forms of crowdsensing. When a user leaves a
crowd, the application VM is simply destroyed, and does not
require additional attention from the user. Second, demands
on the mobile device can also be reduced, as processing is
offloaded to the cloud, and only a single copy of the sensor
data is uploaded even when participating in multiple appli-
cations. The potential reduction in data transmission helps
save energy for users’ mobile devices.



Lastly, our design performs processing and data aggrega-
tion close to the data sources. This brings two benefits: 1) it
reduces traffic on wide-area networks; 2) it reduces network
latency by avoiding long-distance data transmission through
the backbone networks. This makes it possible to scale up
crowdsensing with high-data-rate sensors. VM migration
can ensure that processing remains close to data source even
as users move around.

4. CHALLENGES
There are several technical hurdles in the path of a real-

world deployment of our proposed architecture. We discuss
these below.

4.1 Virtualization Overhead
Leveraging virtualization allows us to create a flexible

platform in a multi-party setting where user privacy, scal-
ability and isolation between crowdsensing applications are
key requirements. These advantages come at the price of
both VM creation overhead and the need for more advanced
inter-VM communication management. In our design, a new
clone of the application VM is instantiated for each user join-
ing the crowd. Ideally, this new VM should start as fast as
possible with minimal cost on resources. In practice, when
a VM Monitor starts a new VM, it must first reserve all of
the memory resources needed for the VM. This constraint
prevents rapid creation of multiple VMs concurrently.

One way to solve this problem is to reduce the num-
ber of running VMs by replacing the per-user application
VMs with one multiplexing application VM on each cloudlet.
However, this will introduce the complexity of process mi-
gration in mobile scenario when any hard state contained in
the application VMs must be preserved. An alternative way
is to reduce the overhead of VM creation through advanced
cloning mechanisms. There are several efforts that try to
reduce the memory copy overhead by cloning the memory
from running VMs. SnowFlock [13] proposes to fetch mem-
ory on demand while cloning VMs. It manages to clone 32
clones in 32 different hosts within one second by combin-
ing on-demand fetching with TCP multicasting for network
scalability. Kaleidoscope [6] takes this one step further by
discriminating VM memory state into semantically related
regions to achieve prefetching and efficient transmitting.

An additional challenge is configuration and performance
of inter-VM communication. The performance of inter-VM
communication is relatively low compared to inter-process
communication. When the system workload on the cloudlet
increases, this may result in delayed transmission of sensor
data between proxy and application VMs. Note that this
low performance is due to inefficient CPU scheduling of the
host, as the physical network interface is not touched by
inter-VM traffic.

4.2 Migration-induced Reconfiguration
Physical mobility of a device may trigger the migration of

the proxy VM and the associated application VMs that are
not stateless. Consequently, the IP address of the mobile de-
vice as well as those of the VMs may change. To maintain es-
tablished connections between mobile device and proxy VM,
as well as between proxy VMs and application VMs, auto-
mated advanced network reconfiguration is needed. This
potentially includes network addressing, NAT settings and
firewall setup in VMs. Due to this overhead, IP-based so-

lutions may not provide adequate performance in our en-
visaged scenarios. Non IP-based solutions such as the Host
Identify Protocol [19] have been designed from scratch with
these limitations in mind, but these protocols still need to
be evaluated in real networks. The deployment of these is
unlikely to be easy, given the fact that today’s Internet is
built almost exclusively on the TCP/IP stack.

4.3 Standardization of Sensing Interfaces
Sensor data is distributed from the proxy VMs to the

application VMs through a publish-subscribe mechanism.
Standard sensor data descriptions are needed to realize com-
munication between proxy VMs and application VMs of var-
ious developers. As discussed in Section 3.1, some efforts [32,
24] have been invested on developing such interfaces, how-
ever, unfortunately so far no consensus has been made yet.

Another challenge lies in the fact that different crowd-
sensing applications might be built on the same sensor data,
but require a different format or sample rate. However, the
sensor data collected from the devices provided by different
vendors may not be able to always provide the data in the
right format or at the right sample rate.

There is a trade-off to be studied on whether the conver-
sion from the original sensor data to the requested output
format(s) must be done on the mobile device, the proxy VM
or inside the application VM itself. At first sight, running
inside the application VM is the most logical choice, as it
removes as much logic as possible from the mobile device
and the proxy VM. However, this results in a lack of syn-
chronization and a potential waste of resources. For exam-
ple, what if all currently running application VMs only need
camera frames at 10 fps, while the mobile device emits at a
standard 30 fps? In this case, it would make sense to put
downsampling application logic on the mobile device, and to
put logic in the proxy VM that can configure the sensor cap-
turing on the mobile device. When a new application VM
is deployed needing 15 fps, the proxy VM may instruct the
mobile device to increase its frame rate accordingly. Sup-
port for device-level configuration may vary significantly by
platform and specific sensor hardware, so proxy VMs need
to be designed to abstract away such differences.

5. CONCLUSIONS
This paper has argued that the existing deployment model

for crowdsensing applications does not support either effi-
cient crowd scaling over heterogeneous mobile platforms or
the data sharing between crowdsensing applications. While
VM-based cloudlets have been widely studied and utilized
for computation offloading, we explore the potential uses of
VM-based cloudlets for lowering the barriers to scaling up
crowdsensing applications. Our solution leverages the exist-
ing programming frameworks for crowdsensing applications.
There are still several challenges that must be addressed be-
fore this kind of deployment model can be adopted, we are
implementing the deployment platform with specific focus
on the research challenges discussed in this paper.
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ABSTRACT 

Open Data Kit (ODK) is an open-source, modular toolkit that 

enables organizations to build application-specific information 

services for use in resource-constrained environments. ODK is 

one of the leading data collection solutions available and has been 

deployed by a wide variety of organizations in dozens of countries 

around the world. This paper discusses how recent feedback from 

users and developers led us to redesign the ODK system 

architecture. Specifically, the design principles for ODK 2.0 focus 

on: 1) favoring runtime languages over compile time languages to 

make customizations easier for individuals with limited 

programming experience; 2) implementing basic data structures as 

single rows within a table of data; 3) storing that data in a 

database that is accessible across applications and client devices; 

and 4) increasing the diversity of input types by enabling new data 

input methods from sensors. We discuss how these principles 

have led to the refinement of the existing ODK tools, and the 

creation of several new tools that aim to improve the toolkit, 

expand its range of applications, and make it more customizable 

by users.  

Categories and Subject Descriptors 

H.4 Information Systems Applications 

General Terms 

Design 

Keywords 

Open Data Kit, mobile computing, smartphones, ICTD, sensing, 

mobile databases, spreadsheets, data tables, paper forms, vision. 

1. INTRODUCTION 
Smartphones are rapidly becoming the platform of choice for 

deploying data collection and information services in the 

developing world. They have quickly leap-frogged desktop and 

laptop computers due to their mobility, increased independence 

from the power infrastructure, ability to be connected to the 

internet via cellular networks, and relatively intuitive user 

interfaces enabling well-targeted applications for a variety of 

domains. In effect, developing countries are skipping the desktop 

and laptop phase of computing development, and are instead 

using smartphones and tablets for a range of tasks that have 

traditionally been performed on larger machines. In concert with 

this development, cloud services are providing many 

organizations with the ability to easily rent data storage space and 

scale hosting resources as needed, either locally or anywhere in 

the world. 

We recognized two trends - 1) capable client devices with rich 

user interfaces and 2) cloud-based scalable data collection, 

computing, and visualization services - several years ago when we 

began the Open Data Kit (ODK) project at the University of 

Washington. Through ODK, we sought to create an evolvable, 

modular toolkit for organizations with limited financial and 

technical resources to use to create data collection and 

dissemination services. We chose Android as our development 

platform because its flexible inter-process communication 

methods allowed us to use existing apps for taking pictures, 

scanning barcodes, and determining location, rather than having 

to rewrite them ourselves, thus speeding development.  ODK’s 

development was guided by a few simple principles, namely: 

 Modularity: create composable components that could be 

easily mixed and matched, and used separately, or together; 

 Interoperability: encourage the use of standard file formats to 

support easy customization and connection to other tools;  

 Community: foster the building of an open source community 

that would continue to contribute experiences and code to 

expand and refine the software; 

 Realism: deal with the realities of infrastructure and 

connectivity in the developing world and always support 

asynchronous operation and multiple modes of data transfer; 

 Rich user interfaces: focus on minimizing user training and 

supporting rich data types like GPS coordinates and photos; 

 Follow technology trends: use consumer devices to take 

advantage of multiple suppliers, falling device costs, and a 

growing pool of software developers. 

The name ODK refers to the entire suite of modular tools. Each 

tool in the suite has been assigned a name that describes its 

function. Previous work has discussed ODK 1.0 [6], which 

consisted of three primary tools: Build, Collect, and Aggregate. 

These provide the ability to design forms, collect data on mobile 

devices (e.g. phones, tablets), and organize data into a persistent 

store where it can be analyzed. Prior papers have also described 

the design of several new tools that are being incorporated into 

the ODK suite: Sensors [1], Scan [3] and Tables [7]. As we 

deployed the original tools, gathered feedback from users, and 

sought to incorporate new tools into the ODK suite, it became 

clear that there were some deficiencies in our design that needed 
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to be addressed. This paper describes these deficiencies, and the 

rationale that drove a redesign of the inter-tool architecture of the 

tool suite, which will be released under the ODK 2.0 label. 

ODK has quickly become one of the leading solutions for a wide 

variety of organizations, from small NGOs to large government 

ministries, and now has thousands of users in dozens of countries 

around the world. The projects for which it is being used range 

over an ever-increasing set of domains including public health 

(our original focus), environmental monitoring, and documenting 

human rights abuses. The ODK website has been visited by over 

65,000 unique visitors from 202 different countries/territories and 

averages over 8500 hits a month. Additionally, over 11,000 

distinct users have installed Collect from Google Play (a number 

that does not include organizations that install Collect directly 

when setting up their deployment). From our users’ collective 

experience using ODK, we have seen many ways to improve the 

toolkit, expand its range of applications, and make it even more 

customizable. Recently, we conducted an extensive survey of the 

ODK user and developer community to better understand how 

people are using ODK and how organizations’ data collection 

needs are evolving. 73 organizations completed our survey, 

providing information on 55 different deployments involving at 

least 5500 mobile devices in over 30 countries. This vast amount 

of feedback, in conjunction with the numerous deployment reports 

and feature requests submitted to our mailing list and website, led 

us to rethink the ODK system architecture. This paper reports on 

the changes that we are now implementing to our system 

architecture and applications, and the rationale behind each. 

2. LIMITATIONS OF ODK 1.0 
Our observations and survey responses can be grouped into four 

principal areas of refinement for ODK: 

1. support data aggregation, cleansing, and analysis/visualization 

functions directly on the mobile device by allowing users to 

view and edit collected data;  

2. increase the ability to change the presentation of the 

applications and data so that the app can be easily specialized 

to different situations without requiring recompilation; 

3. expand the types of information that can be collected from 

sensing devices, while maintaining usability by non-IT 

professionals; and 

4. incorporate cheaper technologies such as paper and SMS into 

the data collection pipeline. 

The design of ODK 1.0 focused on collecting data in the form of 

surveys, and uploading completed surveys into the database for 

analysis and aggregation. It did not provide facilities for getting 

that data back out to clients to review and update. However, 

feedback shows that many users want to be able to store already 

collected data (either from past data collection or from a server 

database) on the device and use it to specify which data to display 

(e.g., a patient’s past blood pressure readings) or to steer survey 

logic (e.g., select follow-up questions based upon a patient’s 

medical history). One user told us, [One limitation of ODK 1.0] is 

the lack of a local database on the device [that contains] 

previously collected information. For example, the last time I 

visited your household, there were 5 people living here. Are those 

5 people still living here?  In addition, one of the largest requests 

that we received from users is to make it possible to view and edit 

data on the device. For example, one user told us, We need a 

presentable way of viewing collected data on the device … like if 

you have a roster and need to make decisions based on some 

earlier responses, you need to be able to view this data.  

Rendering of the surveys in ODK 1.0 was accomplished using a 

variant of a W3C XForms standard defined by the OpenRosa 

Consortium.  Although XForms can specify input constraints (to 

provide some immediate error checking abilities), form navigation 

logic (branching based on previous answers), and multiple 

languages (for local customization), It does not describe the visual 

presentation of the prompts and data types. This led to many 

specializations of ODK for different organizations, which was 

technically challenging for many users. One user told us, We 

struggled to understand xml and the XForm. While the XForm is 

fairly simple, the xml structure is confusing. Some of the 

advanced features require core knowledge of xml coding. 

Originally, ODK assumed humans would enter data explicitly or, 

at most, gather data from sensors that were built-in to the device 

(such as GPS coordinates, barcodes, photos, audio, and video).  It 

did not support the ability to interact with new sensors or process 

data captured from built-in sensors like the camera. However, 

gathering information from external sensors is an often-requested 

feature; such requests range from enhancing a health survey with 

data obtained from medical sensors, to automatically 

incorporating GPS and compass data with captured photos. One 

user told us, Our [use case] requires us to measure the height of 

trees. We currently use a clinometer for this and enter the data 

manually. It would be great if we could access the clinometer 

[from the device] and use it as part of our data collection 

process. Collecting data from sensors attached to the mobile 

device is attractive because applications can directly receive and 

process the data, obviating the need for manual data transfer by a 

human, which may be error-prone.  

Finally, many organizations have extremely limited financial 

resources and still rely on paper forms or very cheap mobile 

phones to gather data, and there is a need to connect these media 

to the ODK ecosystem. Simple SMS is a very common form of 

communication on mobile devices, particularly in developing 

countries, where many people use basic mobile phones that have 

only text and voice features. In addition, many organizations are 

unable to afford the cost of purchasing and maintaining a mobile 

device for every field worker. Such organizations would prefer to 

use cheap and well-understood paper forms to collect data at the 

lowest level of the information hierarchy, and then digitize the 

data at a higher level to enable data transmission, statistical 

analysis, and aggregation. The limitations of the original ODK 1.0 

tools are addressed by the design of ODK 2.0, a refined and 

expanded toolkit with a more flexible system architecture.  

3. DESIGN OF ODK 2.0 
The refinement and expansion of ODK is based on four core 

design principles that we are incorporating into all the tools (these 

stem directly from the four areas of refinement described at the 

beginning of Section 2 but do not correspond 1-to-1):  

1. when possible, UI elements should be designed using a more 

widely understood runtime language instead of a compile time 

language, thereby making it easier for individuals with limited 

programming experience to make customizations;  

2. the basic data structures should be easily expressible in a single 

row, and nested structures should be avoided when data is in 

display, transmission, or storage states;  

3. data should be stored in a database that can be shared across 

devices and can be easily extractable to a variety of common 

data formats; and  



4. new sensors, data input methods and data types should be easy 

to incorporate into the data collection pipeline by individuals 

with limited technical experience.  

Our evolved system architecture is still governed by the over-

arching concern that for computing tools to address the many 

information gaps in developing regions, information services must 

be composable by non-programmers and be deployable by 

resource-constrained organizations (in terms of both financial and 

technical resource constraints) using primarily consumer services 

and devices. To facilitate this, the new ODK 2.0 toolkit 

(individual tool names are italicized) provides a way to 

synchronize, store and manipulate data in Tables on a mobile 

device with a user interface that supports both the smaller 

smartphone screen and larger tablet form-factors, and allows 

viewing and manipulating data in a simple row format. In 

addition, the new design makes customization easier by using 

widely understood standard presentation languages, such as 

HTML and JavaScript, to facilitate a more easily tailored user 

experience on a per Survey basis. Furthermore, ODK 2.0 makes is 

possible to attach external Sensors to mobile devices over both 

wired and wireless communication channels, thereby reducing the 

amount of manual data transcription from sensors into survey 

forms, and also facilitates the automatic conversion of information 

recorded on paper forms to a digital format by using the camera of 

the mobile device to Scan documents. See Figure 1 for a block 

diagram of the ODK tool suite architecture. 

 

Figure 1: The new ODK 2.0 system architecture, showing 

cloud services (left) and mobile client services (right). In the 

cloud, Aggregate provides services to synchronize data across 

devices and export data in common file formats. On the device, 

a common database/file system is shared between the tools and 

across clients. Scan, Survey, and Tables (above the database) 

are tools for gathering, processing and visualizing input data; 

Submit and Sensors (below the database) are tools that 

augment Android to create additional services.  

3.1 Data Management on Mobile Device 
Many applications rely on previously collected data; for example, 

logistics management, public health, and environment monitoring 

often require workers to return and reference previously collected 

data to verify and possibly update conditions. In the previous 

ODK design, revising data from previously completed surveys 

was not supported.  However, more and more of our users want to 

be able to use all or part of previous surveys to complete new ones 

(e.g., not re-entering patient demographics for a follow-up visit 

when that data was already collected in the original registration 

form). To enable data updating, aggregation, curation, cleansing 

and analysis functions on the mobile platform we created Tables. 

Tables allows a user to create new tables, add data, delete data, 

search data, scroll through data, add columns, configure data 

types, view graphs, apply conditional formatting, perform 

summary calculations, and synchronize the data with the cloud. 

Tables presents a user interface for editing and viewing data that 

is optimized for the smaller screens of mobile devices [7], and 

provides customization capabilities for users to easily configure 

the app for their use case. Tables has a number of built-in views, 

and allows users to explore their tabular data with customizable 

views defined by HTML/JavaScript files, thus making 

presentation much more flexible while avoiding recompilation. 

These views can pull data from, and link to, other tables, so that 

users can form an integrated app, rather than a set of loosely 

connected (or completely disconnected) tables. For example, a 

table of facilities can link to a table of specifics about individual 

resources at each facility. Alternatively, Tables can use Survey’s 

strong data typing to add and edit entire rows and incorporate 

input constraint checking, or use Scan’s image processing 

capabilities to add rows based upon filled-in paper forms.  These 

tools (Tables, Survey, and Scan) use an inter-tool architecture 

based on a common SQLite database schema.  

Another important refinement to Survey is making data collection 

and presentation more easily customizable. In Collect, changing 

the look-and-feel of a particular question type or extending the 

expression language (e.g., adding a count function) to express the 

user’s business logic (e.g., visibility and value constraints) 

required changes to Java source code. This high barrier to change 

meant that we spent a significant amount of time refining our user 

interface because it needed to be generic enough to work for many 

use cases. It also created friction to the adoption of the technology 

because organizations lacked the skills or funding necessary to 

customize the tool.  In contrast, Survey allows organizations to 

easily express their business logic and heavily customize the user 

interface for their specific use case through the use of JavaScript 

and HTML. We anticipate that Survey’s JavaScript form 

interpreter, the use of open source toolkits (e.g., JQueryMobile, 

Handlebars, Backbone), and the greater worldwide prevalence of 

JavaScript and HTML coding skills will make it easier for 

individuals and organizations to make domain-specific 

customizations. Our design leverages the suite of standard ODK 

question widgets that encapsulate the rendering, event handling 

and business logic. These question widgets are then extended at 

runtime to incorporate rendering and business logic 

customizations (e.g., visibility and value constraints). Users can 

easily customize the user interface by specifying an alternative 

Handlebars template in the form definition, causing the widget to 

render using the alternative template.  

User experiences from ODK 1.0 deployments show that although 

non-technical users are able to make small customizations to 

existing XForms, creating an entire XForm from scratch is often 

too challenging. Thus, to shield users from the complexity of 

writing XForms, we created Build, a tool that allows users to 

graphically compose surveys, and XLSForm (based on ‘pyxforms’ 

[14]) that gives users the option of writing their survey in an 

Excel spreadsheet that is automatically converted to an XForm. In 

ODK 2.0, we are building a revised converter to transform a 

spreadsheet to a JSON description that can be rendered using 

ODK’s new interpreter that leverages web technologies. By 

allowing users to specify information in a spreadsheet, it enables 

non-technical users to remain shielded from the complexity of 

writing JSON and JavaScript. Users with minimal Javascript and 



HTML skills will be able to copy and modify standard template 

files (e.g., use different HTML constructs or add CSS style 

classes) and reference these modified template files to customize 

the rendering of individual questions in the form or create new 

question types. In the same way, users can also revise the standard 

templates and CSS stylesheets to create an organization-specific 

look and feel. Users with more advanced Javascript and HTML 

skills can customize a question widget’s event handling (e.g., add 

mouseover-like treatments) or define entirely new widgets. 

3.2 Improved Input Methods 
ODK 2.0 reduces the amount of manual data transcription from 

sensors into surveys by making it possible to attach external 

sensors to mobile devices. By hiding complexities such as the 

management of communication channels and sensor state as well 

as data buffering and threading, the Sensors framework [1] 

simplifies the code needed to access a sensor.  

Sensors provides a common interface to access both built-in and 

external sensors connected over a variety of communication 

channels. Thus far, we have implemented channel managers for 

Bluetooth and USB, and plan to implement managers for WiFi 

and NFC in the near future. The USB Manager currently supports 

three USB protocols: Android’s Accessory Development Kit 

(ADK) 2011, ADK 2012, and a USB Host serial channel. Sensors 

also provides a convenient built-in sensor discovery mechanism 

that allows users to discover sensors and associate the appropriate 

driver with a sensor. Users who want to integrate external sensors 

with their mobile devices download and install the Sensors app 

and sensor driver app from an app store such as Google Play. This 

facilitates the easy delivery of the application and driver updates 

to devices. Figure 2 (left) shows Sensors being used in a South 

African clinic to deactivate harmful contaminants (like the HIV 

virus) in breast milk. Sensors provides abstractions that delineate 

application code from code that implements drivers for sensor-

specific data processing. The sensor driver abstraction allows 

device drivers to be implemented in user-space so that locked 

devices can be customized by end users. The framework handles 

the data buffers and connection state for each sensor, which 

simplifies the drivers. Separating application code from driver 

code also allows the code bases to evolve independently.  

In addition to accepting and processing input from a variety of 

different sensors, the continued use of paper forms for data 

collection in resource-constrained environments made it important 

that we also facilitate efficient data entry from paper forms. Many 

of the paper forms used by organizations for data collection 

contain a mixture of data types, including handwritten text, 

numbers, checkboxes and multiple choice answers. While some of 

these data types, such as handwritten text, require a person to 

manually transcribe the data, others, like checkboxes or bubbles, 

can be analyzed and interpreted automatically. To take advantage 

of machine-readability, we designed ODK Scan [3], a piece of 

software that uses a lightweight JSON form description language 

to facilitate the processing of existing paper forms without the 

need to redesign or add coded marks to the forms. To add a form 

to the system, the user creates a JSON form description file that 

specifies the size, location and data type of each form field to be 

processed. The camera on the device is used to photograph the 

form, and computer vision algorithms use the JSON form 

description file to automatically segment and interpret the 

machine-readable data. The image processing components of the 

application are implemented using OpenCV, an open source 

computer vision library, while the user interface components are 

implemented using Android's Java framework. We use the Java 

Native Interface (JNI) to facilitate communication between the 

Java framework and OpenCV’s native image processing 

algorithms. All of the image processing is performed on the 

device so as not to require an Internet or cellular connection. After 

the image processing is completed, Scan launches Collect so that 

users can manually complete the entry of data types that are not 

machine-readable. Scan makes this data entry process faster by 

exporting small image snippets of each form field to Collect, and 

the image snippets are displayed on the screen of the device 

alongside the corresponding data entry box, so that users can 

simply look at the image snippet and type in the value displayed. 

Figure 2 (center) shows an image of Scan being used to collect 

vaccine statistics in a rural health center in Mozambique.  

 

Figure 2: Examples of ODK tools in action. Left: Using 

Sensors to monitor breast milk pasteurization that deactivates 

contaminants (e.g. HIV virus); Center: Using Scan to digitize 

paper based vaccine information in Mozambique; Right: 

Indigenous tribal member using Collect in the Amazon jungle. 

Data can also be collected from and disseminated to users with 

cheap SMS-only phones.  By acting as an SMS server, Tables 

enables anyone to send SMS messages to query an existing table 

or add rows to a table.  We use the data table abstraction to 

implement basic access control measures based on the phone 

number from which the message was sent as well as locally-

administered (on the receiving smartphone) usernames and 

passwords.  For example, this allows a farmer with a cheap phone 

to post available produce to an agent at a remote market or to 

obtain the commodity prices in that market. This allows Tables to 

provide services that can be accessed from the cheapest and most 

common phones without introducing the complexity of an SMS 

gateway or other cloud-based server. 

3.3 Data Management in the Cloud 
Less technically capable users encounter significant barriers to 

leveraging the power of the cloud. To simplify the distribution of 

forms to mobile devices, the retrieval of data from devices, and 

storing and managing data, we designed Aggregate, an auto-

configuring, ready-to-deploy server. Aggregate manages collected 

data, provides interfaces to export the aggregated data into 

standard formats (e.g. CSV, KML, JSON) and allows users to 

publish data to online services (e.g., Google Spreadsheet or 

Fusion Tables). Aggregate is a configurable generic data storage 

service that runs on a user’s choice of computing platform (cloud-

based or private server). Aggregate can be deployed to the Google 

AppEngine hosting service to enable a highly-available and 



scalable service that can be maintained by unskilled users and 

less-capable IT organizations. However, many of our users have 

data locality and security concerns, either because the data cannot 

legally leave the country of origin, or because the data may 

contain sensitive identifiable information, or be high-risk or high-

value data. For these users, AppEngine may not be appropriate. 

Aggregate can therefore also run within a Java web container 

(e.g., Tomcat) using a MySQL or PostgreSQL datastore. 

Communications security generally relies on HTTPS connections 

between client devices and the server. However, because many 

organizations do not have the funds to purchase or the expertise to 

install SSL certificates on their own servers, we provide user 

authentication and data security over HTTP communications 

through DigestAuth and the asymmetric public key encryption of 

form data before transmission to the cloud. If asymmetric public 

key encryption is used, the form data is stored in encrypted form 

on the server, which enables some organizations to continue to 

leverage the AppEngine cloud hosting service despite stronger 

data security requirements. In this case, users download the 

encrypted data to a computer and use a locally-running tool called 

ODK Briefcase to decrypt it using a private key. 

To provide datastore independence, and because Aggregate parses 

the submitted XForm instance into column values (to better 

support filtering and visualization) and incorporates a dynamic 

datastore abstraction layer rather than a layer set at compile-time. 

Since XForms can define arbitrarily deep nested groupings of 

repeated questions, Aggregate performs a complex mapping of the 

XForm to a set of database columns and tables. This greatly 

complicates the presentation of the data, and the wide variety of 

different use cases created by users prevents a generic processing 

of these nested repeating sections when visualizing, publishing or 

exporting the data. Since Aggregate parses the submitted XForm 

instance into column values, a more capable data analysis package 

could be configured to operate directly on the underlying database 

tables. However, the complexity of this configuration makes it 

impractical for many of our users. 

In ODK 1.0, the communications flow is unidirectional; blank 

forms flow from the cloud service (Aggregate) to mobile devices, 

and data from the filled-in forms flows back to the cloud service 

and then out to remote services or into file exports. Collected data 

can be deleted, but is otherwise immutable and provides a store of 

record. Data is stored (aggregated) in the cloud, where simple 

curation and data visualization tools are provided. Aggregate 

bridges the gap between mobile data collection tools and the 

sophisticated data analysis software able to derive complex results 

by providing many forms of data export. 

In version 2.0, a simple row is the basic storage element; 

repeating groups are explicitly represented as linked rows across 

two different forms. The new design eliminates the complex 

backend mapping that made it difficult for organizations to access 

the database structures directly. The communications flow has 

changed so it is now a cloud-mediated peer-to-peer store-and-

forward network. Any authorized device running Tables can 

create new surveys and share data with any of its peers and the 

remote services can publish surveys and data back out to the 

mobile devices. Retaining a cloud service (Aggregate) as both a 

datastore and a store-and-forward communications nexus enables 

robust peer-to-peer operations in intermittent and low-

connectivity environments.  The cloud also provides a central 

point from which to manage and disseminate a security model that 

can be applied and enforced independently on each device.  

Since data is no longer immutable, Tables relies upon the user to 

resolve conflicts that occur whenever two users concurrently 

update the same row in a table. Conflicts are detected and 

resolved at the individual row level (in keeping with our row-

based information model) between a row on the user's mobile 

device and a row on the server. This maximizes the system’s 

ability to disseminate new and uncorrelated change across 

devices. Manual, client-side conflict resolution was chosen 

because: 1) established recent-modification conflict resolution 

techniques are inappropriate or difficult to apply across devices 

that may not be time synchronized and which may be in 

disconnected operation for extended periods of time; 2) since 

ODK targets a diverse set of use cases and application domains, 

any assumptions built into an automatic resolution mechanism 

will likely be inappropriate for some domains; 3) accurately 

expressing the procedural rules to be applied during automatic 

conflict resolution is likely difficult for non-programmers and 

capturing and applying these domain-specific rules would 

increase the complexity of the server design; 4) client-side 

resolution benefits by keeping the user involved with reconciling 

conflicts since many times they understand the semantics of the 

conflict and can better resolve it at the moment it is detected 

rather than by a more remote administrator at a later date.  

Data submission is currently initiated by the user because 

connectivity is often intermittent and organizations want to 

control data transfer costs. To better use available connectivity 

that may be sporadic, and to improve data timeliness (both on the 

mobile device and when publishing data to the peers), we are 

designing a tool called Submit that will manage data transmission. 

Submit enables organizations to specify parameters such as data 

priority, data importance, deadlines, and the cost of the transport 

mediums. Submit then factors in the device’s connectivity history, 

and intelligently uses the connectivity available (e.g., SMS, 

GPRS/3G, Wi-Fi) to create a priority routing system that 

improves data timeliness in the intermittent and expensive 

connectivity of the developing world. Connectivity history is an 

important factor in routing decisions, since there may be certain 

times of day when the device is within range of a Wi-Fi base 

station. Alternatively, depending on the data priority and the costs 

of other connectivity options, it may make sense for the data to be 

stored locally until the user returns to Wi-Fi connectivity.  

3.4 Use Case: Cold Chain Management 
ODK 2.0 is an expanded and refined set of modular tools for 

collecting and managing data in low-resource environments. This 

section describes one concrete use case in which ODK 2.0 could 

be used to improve the delivery of health and information 

services. The cold chain is a complex sequence of refrigeration 

equipment used to ensure that vaccines retain the correct 

temperature during transport and storage. Collecting and 

disseminating accurate and timely data regarding a country’s cold 

chain improves resource-allocation and planning, but cold chain 

inventories are currently mostly paper-based systems that contain 

large amounts of inaccurate or out-of-date information. Replacing 

the paper-based system with ODK 2.0 could improve the speed 

and reliability of the inventory update process. For example, 

remote field workers could use Tables to automatically download 

the most up-to-date subset of cold chain data for a site from 

Aggregate, and use Survey to enter any new refrigerator 

information. Sensors could be used to continuously monitor the 

temperatures of refrigerators at the site, and the worker could use 

Tables to visualize this data and check for anomalies. Finally, the 



worker could use Scan to digitize paper-based records that track 

the number of vaccines administered at this site to improve stock 

monitoring and resupply. All of these tasks could be performed 

quickly on-site and the data made immediately available to 

decision-makers and stakeholders. 

4. RELATED WORK 
A variety of other solutions attempt to replace paper-based data 

collection with digital tools. CAM [11] used its own scripting 

language to augment paper forms by using bar codes to trigger 

audio prompts for manual data entry. MyExperience [5] collects 

survey responses triggered by sensor events but does not address 

the larger issues of organizational information flow.  Commcare 

[4] is the most related to Collect in that it targets use by health 

workers and also uses XForms, but it is less flexible in how it can 

be composed with other tools and requires recompilation to 

customize presentation. Manipulating small databases on phones 

has received less attention. Tools like Excel are available in 

smartphone versions but have not been adapted to small screens 

and do not work directly from a database rather than a file. Uju 

[13] enables the creation of small databases that can be populated 

or queried over SMS but does not integrate with tools that obtain 

data from sensors or paper forms. Extracting data from paper 

forms via crowdsourcing is being commercialized by Captricity 

[2], while LocalGround [12] processes manually annotated paper 

maps and adds the data to existing digital maps. Neither of these 

tools work in completely disconnected operation. Recent activity 

focuses on connecting external sensors to phones using audio 

jacks (Hijack [9]) and Bluetooth (Amarino [8]).  Google released 

a sensor development kit for Android [15], and researchers have 

focused on low-power operation of external sensors (Reflex [10]). 

However, what distinguishes ODK 2.0 from other solutions is the 

interoperability of these elements, and the ability to do all the 

computation, analysis and visualization on the device. 

5. FUTURE WORK & CONCLUSION 
The original design of ODK assumed that a system administrator 

would have access to a computer to initially set up and administer 

the system, including designing forms and setting up data storage 

facilities. However, in many rural locations, computers are rarely 

available, which limits the adoption of ODK in these settings. To 

reach these areas, it is desirable to create a system that could be 

entirely set up and administered on a mobile device. While ODK 

2.0 provides users with some methods for building information 

systems on mobile devices (e.g., database design with Tables, 

customized question widgets) it does not entirely remove reliance 

on computers as users are not able to configure their cloud service 

or write a device driver. Additional work is necessary to build a 

system that can be set up and managed entirely on a mobile 

device. The new ODK 2.0 design focuses on a core set of tools 

that enable users to move beyond treating mobile devices as 

simple input devices, and instead leverage mobile computing 

platforms to build more dynamic collaborative information 

systems in the field. We expect that the changes in design and the 

new capabilities of the software will lead to a rich new set of 

research challenges and opportunities that we plan to explore.  

Open Data Kit provides organizations with a modular toolkit to 

build application-specific information services for use in resource-

constrained environments. Our own experiences combined with 

extensive feedback from organizations using the toolkit have led 

to a redesign of ODK that aims to better meet the needs of a wider 

range of organizations. Specifically, our design changes include 

1) favoring runtime languages over compile time languages to 

make customizations easier for individuals with limited 

programming experience; 2) implementing basic data structures as 

single rows, 3) storing data in a database that is accessible across 

apps and client devices; and 4) increasing the diversity of input 

types by enabling new data input methods from sensors. We 

discussed how the new system design led to the addition of 

several tools to ODK 2.0 and how the new system architecture 

enables its adaptation to an even larger and varied set of 

applications. The ODK tools and their source code are freely 

available for download at http://opendatakit.org and are 

distributed under an Apache2 license. 
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ABSTRACT
We study the competing goals of utility and privacy as they
arise when a user shares personal sensor data with apps on a
smartphone. On the one hand, there can be value to the user
for sharing data in the form of various personalized services
and recommendations; on the other hand, there is the risk of
revealing behaviors to the app producers that the user would
like to keep private. The current approaches to privacy,
usually defined in multi-user settings, rely on anonymization
to prevent such sensitive behaviors from being traced back
to the user—a strategy which does not apply if user identity
is already known, as is the case here.

Instead of protecting identity, we focus on the more gen-
eral problem of choosing what data to share, in such a
way that certain kinds of inferences—i.e., those indicating
the user’s sensitive behavior—cannot be drawn. The use
of inference functions allows us to establish a terminology
to unify prior notions of privacy as special cases of this
more general problem. We identify several information dis-
closure regimes, each corresponding to a specific privacy-
utility tradeoff, as well as privacy mechanisms designed to
realize these tradeoff points. Finally, we propose ipShield
as a privacy-aware framework which uses current user con-
text together with a model of user behavior to quantify an
adversary’s knowledge regarding a sensitive inference, and
obfuscate data accordingly before sharing. We conclude by
describing initial work towards realizing this framework.

Keywords
Behavioral Privacy, Context-awareness, Inferences, Model-
based Privacy, Android, ipShield

1. INTRODUCTION
Smartphones with onboard and externally connected body-

worn sensors are capable of tracking our locations and so-
cial neighborhoods, monitoring physiological markers, and
learning about our evolving social dynamics. The raw data
collected are increasingly being used to infer our personal,
social, work and urban contexts. These contexts are in
turn acquired by a growing ecosystem of context-aware apps
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Figure 1: A simplified information flow scenario from

users to app producers. The shared data is used for

computing various inferences.

to provide us with personalized app experiences such as
behavior-tailored insurance plans, mobile health (mHealth)
diagnostics and customized recommendations to enrich our
social and personal interactions (or targeted advertising).
We refer to the benefit to the user of such personaliza-
tion as utility. Embedded within the identity-annotated
time-series of shared sensor data is the user’s full behav-
ioral footprint, to the minutest detail, including many that
she may wish to keep private. Users are often unaware of
the possible (mis)use of their personal information by the
data-consuming untrusted apps, causing information asym-
metry between information providers (users) and consumers
(apps.), leading to a lemon market [25]: users are increas-
ingly skeptical of app producers’ privacy policies, with no
way of verifying good policies, and so providers have little
incentive to abide by them, leading to more user skepticism,
in a negative feedback spiral.

Information flow from users to apps is summarized in
Fig. 1. Broadly speaking, the shared sensor data X has:
(a) a set of personal identifiers P , such as name and SSN
associating it to the user; (b) a set of quasi-identifiers Q,
such as age, gender, zip code, which when combined with
auxiliary information sources can possibly identify the user;
and (c) a set M , containing data values corresponding to the
measurement. Shared data is represented by Y and is used
by the apps to compute various inferences, some of which
can be sensitive (i.e., are such that the user wishes them to
remain private). Consider the following examples:

E1: A user shares her accelerometer data X with an mHealth
app to monitor her overall activity level f(Y ) but faces
the risk of revealing her exact activity type g(Y ), which
is also inferable from the same data.

E2: A user desiring a safe driver discount f(Y ) on insur-
ance rates may be willing to share her location and
accelerometer data X. However, periodic location re-
lease near a place of worship may reveal religious pref-
erences g(Y ).

E3: A user is required to share EKG and respiration data



X with an insurance company which uses the data to
check for heart and respiratory disorders f(Y ), and
provide discounted rates. However, the same data can
be used to detect onset of stress g(Y ), a behavior the
user wants to keep private.

If Y is the same as X (no privacy mechanism is used), the
presence of set P implies that the inferred sensitive behaviors
may now be traceable back to the user, violating her privacy.

Prior work on privacy mechanisms is centered around two
design objectives: data anonymization and incomplete re-
construction. The process of anonymization includes the
removal of P and the suitable obfuscation of Q present in X
to break the association between the data and the user. In
a multi-user setting where privacy of an entire database of
user data is desired, measures such as k-anonymity [24] and
l-diversity [17] are used to determine the level of obfusca-
tion required to make the user anonymous or indistinguish-
able within a subpopulation, achieving privacy-in-numbers.
However, the breakdown of anonymization in the face of
auxiliary information [18, 11, 23] has prompted the design
of measures such as differential privacy [6] which, in a multi-
user setting, recommend use of structured noise to perturb
aggregate query responses and protect the membership (i.e.,
presence or absence) of an individual within a database. The
second objective is to prevent complete reconstruction of X
from Y . To achieve this in addition to anonymization, the
measurements in M are also adequately perturbed [22]. By
preventing reconstruction, the goal is to protect against pri-
vate inferences which could be made from X alone. However,
it has been shown that partially reconstructed data can be
used to make inferences about private behaviors [23, 11].

Now consider instead a setting in which a single user
shares a time-series of sensor data annotated with identity
information, as illustrated in E1 − E3. This motivates the
investigation: what are the privacy and utility goals appro-
priate to such a setting? The traditional notion of protect-
ing user identity is no longer a concern because the apps
under consideration (e.g., mHealth, customized insurance
plans) require user identity for providing personalized ser-
vices (utility). Thus, instead of identity, a user is interested
in protecting the privacy of sensitive behaviors which can
be inferred from the shared data. Another consequence of
this single-user setting is that privacy measures relying upon
privacy-in-numbers within a subpopulation do not apply.

In this paper, we consider the general form of the privacy
problem given above and make three main contributions.
First, we give a very general privacy model in which two
sets of inferences (the white and black lists shown in Fig. 1)
constitute utility and private behaviors, respectively. These
inferences are marked as f(Y ) and g(Y ) in examples E1 −
E3. The use of inference functions allows us to establish
a terminology to unify prior notions of anonymization- and
reconstruction-based privacy as special cases of the more
general problem. Second, we identify several information
disclosure regimes, each corresponding to a specific privacy-
utility tradeoff, and privacy mechanisms designed to realize
these tradeoff points. These insights lead us to our third
contribution: the conceptualization of ipShield—a privacy-
aware framework which uses current user context together
with a model of user behavior to quantify an adversary’s
knowledge regarding a given sensitive inference, and then
apply an appropriate privacy mechanism on the data before
sharing. We conclude by describing the initial work we have
done towards realization of the framework.

2. PRIVACY PROBLEM AND CHOICES
We define an inference function as a classifier which takes

shared data as input and performs a classification of the user
as being in a particular behavior state, e.g., into one of the
activity states (walking, running, still) in E1, one of several
religions in E2, or the onset of stress in E3. Classifiers are
machine learning algorithms (e.g., supervised, unsupervised,
reinforcement) used to learn and then classify based on pat-
terns in the data. For example, in supervised learning, these
patterns are learned using labeled data provided by the user.

The problem of protecting the privacy of sensitive infer-
ences is characterized by a tradeoff between the application’s
need to obtain information for providing utility to the user
and the user’s need to control the information shared for
protecting privacy. As shown in Fig. 1, our privacy no-
tion is defined in terms of what can be extracted from the
shared data Y . The user specifies his privacy preferences
as a blacklist of inferences, {g1(Y ), . . . , gn(Y )}, and the app
provides its utility requirements as a whitelist of inferences,
{f1(Y ), . . . , fn(Y )}. The privacy mechanisms are designed
to ensure the app can effectively compute whitelisted in-
ferences to some degree of accuracy, but where the app
cannot draw the blacklisted inferences. Ideally, any data
shared with an app should not reveal any more information
than what is already known to the app about the black-
listed inferences from prior (population-scale) knowledge or
side-channels. We remark that this is a general formulation
of the privacy problem, and that the previously mentioned
privacy mechanisms such as anonymization and protection
against reconstruction attacks can be thought of as carefully
chosen blacklist inferences.

2.1 Information Disclosure Regimes
The various possible tradeoff points for the utility and

privacy objectives define a spectrum of information disclo-
sure regimes that a user can operate in. At one extreme,
corresponding to zero disclosure, the user shares no infor-
mation at all, ensuring complete privacy but at the cost of
complete loss in utility. At the other extreme, correspond-
ing to full disclosure, all information is shared. Now the
user achieves utility at the cost of complete loss of privacy.
Each point in this spectrum is realizable by using an appro-
priately designed privacy mechanism, now we discuss some
two operation points of particular interest.

1. Maximum Privacy Disclosure (MaxP): We re-
lease information (some transformation of X) such that only
the desired utility (whitelisted functions, and consequences
inferable from them) can be computed from the released in-
formation. This point corresponds to targeted disclosure.

2. Maximum Utility Disclosure (MaxU): We release
information which preserve all characteristics of X, except
those which can be used to violate privacy (blacklisted func-
tions). This point corresponds to targeted hiding.

2.2 Realization of the Privacy Mechanisms
We define a privacy mechanism as a two-step process: first

identifying the data to be shared (e.g., the subset of features,
data samples, inferences, data types, etc.) and then applying
obfuscation to the data before sharing. Below, we enumerate
a set of potential privacy mechanisms.

1. Feature Selection: Instead of the high-dimensional
data X, from which information flow is hard to control [19,
18] we extract a set of features F = {h1(X), . . . , hn(X)} and
use them to represent the data in a lower-dimensional space.
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Figure 2: Different realizations of privacy mechanisms.

The functions hi(X) can represent features like mean, vari-
ance, Fourier coefficients, etc., extracted from the data sam-
ples over time. Inferences typically operate in the feature
space and use a subset of F to perform their classification.

To implement MaxP, we observe that by sharing features
we can better control the information shared. The privacy
mechanism (see Fig. 2(a)) selects a subset of features re-
quired by the whitelisted inferences but which do not con-
tribute to the blacklisted ones. The obfuscation step either
suppresses all the other features and shares only the selected
features or synthesizes data X ′ preserving only selected fea-
tures (and their consequences) and nothing else. This mech-
anism requires the app to share information regarding the
features the inferences depend on.

2. Sharing whitelisted inferences: Another privacy
mechanism which also implements MaxP is that of sharing
whitelisted inferences (or suppressing blacklisted ones). The
idea is to compute the inferences on the phone, obfuscate the
results such that they do not reveal any information about
the blacklisted inferences and share the obfuscated results
instead of X. For this to work, the apps need to provide
the exact implementation of the inference algorithm to the
user, which may be proprietary and difficult to share. An
alternate strategy for evaluating the whitelisted inference
functions is to use cryptographic techniques. We suggest
two such techniques (see Fig. 2(b)).

• One-sided Secure Function Evaluation (SFE) can ap-
plied (using, e.g., Yao’s garbled circuit [27]) to evaluat-
ing the inference function. Both parties provide their
inputs (the user provides her sensor data, and the app
the inference function), and the function is evaluated.
Since the protocol is one-sided, only the user obtains
the result of the computation; and the app knows noth-
ing about the user input. The user can then obfuscate
the result before sharing it with the app.

• Homomorphic Encryption [8] allows computation to be
carried out on the cipher text directly, yielding an en-
crypted result of the operations performed on the plain
text. The user performs homomorphic encryption on
the data and sends it to the app, which can then per-
form function evaluation on the encrypted data and
return the encrypted result to the user, who decrypts
it to obtain the result. The second step is to perform
obfuscation of the result before sharing with the app.

While the above techniques allow computation of the in-
ference functions without their disclosure, there is no way
for the user to know if the results computed are for the
whitelisted inferences only. Thus the privacy mechanism
must use other techniques (such as zero knowledge proofs [10],

random spot checks, etc.), to ensure that the correct func-
tions are being evaluated. In addition, while feasible in the-
ory, these techniques are extremely computationally expen-
sive and thus energy-intensive.

3. Random Projection: Following this mechanism (see
Fig. 3), we share projections of the features instead of the
features themselves [16]. That is, we project the features
into a lower dimensional space before sharing. To ensure
that privacy is maintained, the transformation is kept pri-
vate and is known only to the user.

For utility goals, the user furnishes training labels so that
the app can learn a classifier, based on the projected fea-
tures and associated labels, for the whitelisted inferences
(and their consequences) but nothing else. In order to learn
the labels in the embedded space, the key property required
is that pairwise distances between points in the original fea-
ture space be preserved. Fortunately, when the transfor-
mation is derived from randomly generated basis vectors
drawn from an i.i.d. normal distribution, the Johnson Lin-
denstrauss lemma states that this property holds with high
probability when the dimensionality of the new projected
feature space satisfies a certain size constraint [13, 16].

This mechanism eliminates the need to know a priori the
mapping between the inferences and features as required by
the feature selection approach. It places a significant burden
on the app, however, which must now learn the classifier
or the whitelisted inference. An advantage of using this
mechanism is that we can guarantee privacy when there is no
side-channel information, as only the whitelisted inference
labels are shared.

4. Feature Perturbation: We use this mechanism to
realize MaxU (see Fig. 2(a)). We select and transform a spe-
cific set of features, and share everything else. For example,
for an audio signal we can choose pitch as the feature to
transform and use perturbation to obfuscate it. While in-
ferences such as identification of the speaker, which rely on
pitch, are affected, other inferences not depending on pitch
remain accurately computable. One of the drawbacks of this
mechanism is that it does not protect against blacklisted in-
ference functions, which can learn a classifier using the set
of released features instead of the transformed ones.

3. DATA FLOW SCENARIOS
A privacy framework implementing (a possible subset of)

the above privacy mechanisms must fit into existing state-of-
the-art mobile platforms. We investigate the different place-
ment points of such a framework by taking into account the
various data flow scenarios between a user and the apps.

We use the Android OS [1] (see Fig. 4(a)) as represen-
tative of a state-of-the-art mobile system. To simplify our
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presentation, we derive an abstract model that combines the
functionalities of the middle layers into a single block and
call it the mobile platform. Apps running on the phone form
part of the topmost layer (see Fig. 4(b)). We assume that
the platform is trusted to not leak user information whereas
the app layer (running third-party apps) is untrusted. Figs. 5
(a), (b) and (c) illustrate the possible data flows. Compu-
tation local to the phone is performed within the dotted
box. The implementation of the privacy mechanisms will
vary depending on the placement of the privacy framework.

If a locally running app (shown in Fig. 5(a)) is completely
insulated and does not communicate outside the dotted box
then the user need not obfuscate data before sharing. How-
ever, static analysis of app code and information flow track-
ing techniques [7] have revealed the existence of side chan-
nels through which apps leak information to the cloud [9].
To prevent such attacks the framework needs to be placed
between the mobile platform and the app and would re-
quire changes to the platform code. For a cloud-based app
(Fig. 5(b)), the framework can be included as part of the
client implementation. While this would eliminate the need
to make platform changes as described for the previous case,
it would involve modification of the app clients. In addition,
the modified client code would need to be trusted and not
leak information. Finally, with a broker-cloud-hosted app
(Fig. 5(c)), the privacy framework can be pushed to the
trusted server implementing the broker service.

Each placement choice corresponds to a different tradeoff
in terms of implementation complexity. Choices in Figs. 5(b)
and 5(c) are specific to an app client or a broker, and hence
might require significant duplication of implementation ef-
fort. Also, for Figs. 5(a) and 5(b), the implementation has
to be lightweight owing to resource constrained mobile plat-
forms, whereas there is no such restriction when the frame-
work is running on a trusted server as in Fig. 5(c). Without
assuming a trusted broker, we implement our framework as
part of the mobile platform. We can thus intercept and ob-
fuscate data in all the possible scenarios.

4. ipShield: THE PRIVACY FRAMEWORK
We conceptualize ipShield, the inference privacy frame-

work (see Fig. 6) and describe our implementation on an
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Android-based mobile platform. Prior work on privacy frame-
works rely on static privacy policies, or use information flow
techniques to detect potential leakage from apps and ap-
ply binary policies of complete access or no access to data
at all [1, 2, 7]. In comparison, ipShield makes two main
contributions. First, it implements context-aware privacy
policies (blacklist and whitelist specification). Broadly, con-
text refers to a combination of the current physical (e.g.
walking, running, still, smoking), location (e.g. indoor, out-
door, office, home), social (with friends, in meeting), and
even psychological (e.g. stress) state of a user and can be
inferred from a variety of sensor measurements. There is
active research towards creating an operating system ser-
vice [5, 26], which would provide apps with contexts rather
than sensor data. Context-awareness allow users to define
dynamic fine-grained privacy policies depending on current
context – an improvement over the current binary and static
policies. Since the user wants to protect against blacklisted
inferences, possibly when in certain context states, other
contexts are ipso facto safe for data release. Second, ip-
Shield, uses a graphical model to capture initial adversarial
knowledge and its subsequent increase with each disclosure.
It then uses the model to determine the level of obfuscation
required before releasing the data. We present a case for
model-based privacy and follow it up with the design and
initial implementation of the privacy framework.

4.1 A Case for Model-Based Privacy
The degree of obfuscation required depends on the ad-

versary’s capabilities. Prior work has shown that human
behavior, and thus, we can assume, behavioral inferences,
exhibit significant correlation [14], which can be captured
using graphical models [20, 12]. We assume a model-based
adversary that maintains a belief on the blacklisted infer-
ences based on prior knowledge and continuously updates
the model parameters by observing the shared data.

4.1.1 Adversary Model
The maximum amount of information that can be ex-

tracted by an adversary is quantified by the mutual informa-
tion between the whitelisted and the blacklisted inferences.
To compute the mutual information, we need to learn the
joint distribution of the two, which can be done using so-
phisticated graphical models. The mutual information gives
an upper bound on the amount of information which can be
possibly extracted by the adversary.

We assume that the adversarial power is captured us-
ing graphical models such as a Dynamic Bayesian Network
(DBN) or a Markov Chain. The states of the model corre-



spond to the different inferences that could be made using
the shared data. Prior knowledge of the adversary from
auxiliary sources is expressed as the prior probability on the
occurrence of a state and the transition probabilities on the
edges. We track the change in adversarial knowledge by
updating the probabilities with every data release.

4.1.2 Learning the Obfuscation Function
The obfuscation functions are used to transform the data

so that (a) the adversary cannot make the blacklisted infer-
ences; (b) the data utility is preserved; and (c) the obfus-
cated data is plausible, i.e. not so obfuscated that the data
points become outliers which can be easily filtered by the
adversary. However, the obfuscation function only provides
privacy against the graphical model used for the adversary.
This requires that the model be powerful and capture data
dependencies effectively.

Depending on the adversary’s belief we define three dif-
ferent types of obfuscation actions: (a) Suppression, where
data is not released. However, we need to ensure that sup-
pression itself does not increase adversarial knowledge about
sensitive state; (b) Perturbation, where structured noise is
added to increase uncertainty in the blacklisted inferences;
and finally (c) Synthesis, where synthetic data unrelated
to the actual data is generated by sampling the graphical
model, to ensure plausibility of the obfuscated data.

4.2 Design of ipShield

The different layers of ipShield are shown in Fig. 6 and
are explained below.

Sensors: This layer provides access to built-in sensors
on the phone (e.g., accelerometers, GPS, microphones, cam-
era), or external body-worn sensors such as a galvanic skin
response sensor, EKG sensors, or other virtual sensors such
as the calendar (providing event schedules), battery (provid-
ing power status), feature sensor extracting various features
such as mean, variance, etc. from actual sensor measure-
ments (e.g. probes in Funf [3]).

Context Framework: This layer collects data from the
sensors and uses it to identify the current context state of
the user. We have implemented this layer as an extension
to the open-source sensor data collection and dissemination
library Funf [3]. For example, an activity context can be a
decision tree classifier that was trained offline. At runtime,
accelerometer data is given to the classifier, which extracts
features such as mean, variance, and Fourier coefficients,
and uses them to classify the data into activity states such
as walking, running, and still.

Inference Framework: The inference framework takes
the current state, which recall is a set of contexts, and uses
them to compute inferences. This is again done using clas-
sifiers, which are trained offline using contexts and user-
provided labels as training data. For example, presence at
the location of a religious place, together with time of day
and day of week, could be used to make an inference about
religious preferences. These inferences are part of the black
list and white list specified by the user and the apps, respec-
tively.

Privacy Firewall: The privacy firewall comprises of three
different subsystems. First, the graphical model, which is as
mentioned in Section 4.1. Second, the user preferences sub-
system, which allows users and apps to specify the black list
and white list of inferences, respectively. The third subsys-
tem contains the rules and the obfuscation blocks. The rule

block contains the set of privacy policies (similar to rules us-
ing iptables for configuring network firewalls), which specify
the obfuscation action on the sensor data when a specific
context state is true. These policies can be either config-
ured by the user or derived from the white and black lists
using the graphical model. There are two ways a user can
configure these lists. First, we envision that similar to net-
work firewall config files, or spam filtering, a user can obtain
such config lists published by privacy experts and personal-
ize them according to her preferences. Second option that is
currently being researched is the use of crowdsourcing to un-
derstand user expectation of privacy and utility of popular
apps used on the phone [15].

The obfuscation block implements the different actions. If
the obfuscated data does not increase the adversarial knowl-
edge about the sensitive inference, data is released, else, it is
subjected to further iterations of obfuscation before it meets
the privacy and utility requirements.

Application: The privacy firewall is the point at which
data is shared with the apps. While most of the current
apps require sensor data directly, there has been a steady
growth in context-aware apps which take contexts as input
instead of sensor data. Thus, the firewall should implement
interfaces for sharing both obfuscated sensor data as well as
derived contexts.

4.3 Prototype Implementation and Use Case
In [21] we provided an implementation of the changes on

the Android platform required to enforce the context-aware
obfuscated sensor data sharing. For model-based privacy, we
created a prototype of a DBN on the Android platform [4]
and used it to determine when to suppress or release data.
We are currently working towards a privacy rule specifica-
tion framework for user preferences.

As use case, we consider an example of selective suppres-
sion of features extracted from accelerometer data. Activity
level of a user, is a binary decision of being active or in-
active, and can be inferred via decision trees directly from
features over windows of accelerometer data. The adversary
model is also a decision tree that infers the activity type,
such as walking, running, biking, from the same windows of
accelerometer data (E1 in Section 1). Thus, the white list
here is to perform activity level detection and the black list
is to prevent the detection of specific activity type. The ob-
fuscation we perform is selective suppression of features (we
release entropy of Fourier coefficients) such that the activity
type inference is no longer inferable via a decision tree based
adversary.

5. LIMITATIONS AND FUTURE WORK
The general privacy problem of precluding a set of behav-

ioral inferences from being made while ensuring that others
can be made involves a complex interaction of information
theory and machine learning. The problem is well defined
only when the whitelisted inferences do not completely over-
lap the blacklisted inferences, in which case releasing even
the whitelist inferences themselves would violate privacy.
For well defined settings, the challenge lies in finding the
right feature subset or data transformation which will have
an acceptably low mutual information with the blacklisted
inferences.

Our framework offers a context-aware model-based solu-
tion to the problem. The ability of the model to account
for the relationship between a variety of inferences, learning
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accuracy based on training data, and finally the feature set
corresponding to the whitelist inferences are all key to the
success of the framework. In addition, apps which use data
that manifest dependencies over long periods of time, maybe
hard to protect against, owing to order constraints on the
graphical model.

Finally, our adversary model is limited because it does
not account for the relationship between the app producers.
A possible enrichment to the model could be to augment it
with information from social networks which model personal
relationships. In the future, we aim to incorporate these into
our system for a better privacy experience.
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ABSTRACT
The display cloud model allows users to select local and remote
programmable displays, and add them to a user specific cloud dis-
play where the user can arrange them freely. On a cloud display,
the abstraction representing remote graphical content is termed a
visual. It can be positioned and resized freely. Wherever a visual
touches a part of the cloud display with physical displays present,
the physical displays will show the corresponding graphical con-
tent of the visual. The physical displays can simultaneously show
several visuals from one or many users.

The display cloud approach is suitable for public environments
because we do not allow user customization of the displays, a user
does not have to expose any data except the actual graphical content
to the display computers, and he does not have to go through the
displays to do user interaction with his resources. Mobile devices
have an essential role in achieving this. They provide, for each user,
the means to detect displays, to add displays to the user’s cloud
display, to manage displays and visuals in a cloud display, and to
interact with visuals.

An insight is that the display cloud model is maximally decen-
tralized between users, and maximally centralized per user. We
conducted a set of experiments on a prototype using 28 display
computers with up to 21 users. The results show that the prototype
reacts interactively fast for each, and scales well to many users.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

Keywords
ubiquitous displays, display clouds, cloud displays

1. INTRODUCTION
The research problem we focus on is how to let a user display

content produced on his own computers onto one or several dis-
plays both local and remote to the user. The research challenges
are to understand how to do this (i) in a scalable way with regards
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to performance metrics like frame rates, interactive latency, and
consumed bandwidth for both a single and multiple users when the
number of displays increase, (ii) in a simple way so that a user can
rapidly display what he wishes, (iii) in a flexible way with regards
to tiling together several displays to create a larger and higher reso-
lution display, (iv) in a secure way demanding no or very little more
trust from the user than what he has already given elsewhere, using
his own computers.

The methodology applied is systems research where we research
possible architectures, designs and implementations of prototype
systems, and document the performance characteristics of at least
one such prototype. We propose, and have partially implemented,
the Display Cloud approach. A user with a mobile device can easily
configure a cloud display composed of one or many programmable
displays from a loose set of displays called a display cloud. Using
the mobile device, the user can then securely and scalably display
content produced at or controlled by his computers onto the cloud
display. A user can flexibly define many content entities, termed
visuals. When a user moves from one display to another across a
room, building, city, country or continent, the visuals can follow
the user or be displayed wherever the user wants as long as the
displays are a part of the user’s cloud display.

As a case, let’s assume that Amy meets her friends at a coffee
shop and wants to show them pictures she has on her home compu-
ter. There is a large display cloud enabled display above the table.
Amy takes her smartphone, starts the display cloud app, and scans a
unique ID, a QR code, on the display. The app then connects to the
display and Amy sees it represented as a rectangle on her phone.
The new display has become a part of her phone’s cloud display
and can be dragged and positioned relative to any other display in
her cloud display using the phone. Amy then uses the phone to
select a picture viewing application on her home computer as the
source for a visual. The visual is represented on the phone as a
rectangle, and Amy drags the rectangle onto the new display’s rect-
angle to make it visible. The display cloud system starts a viewer
on the new display, and it begins to show the content produced by
Amy’s home computer. Through the smartphone, she can freely
reposition and resize the visual content on the large display, and
interact with the home computer application. Amy’s friends can
now watch the pictures on the large display. After Amy is done,
she removes the coffee shop display from her cloud display, and all
content delivered from Amy’s home computer disappears. If Amy
forgets to manually delete the display from the cloud display, it will
automatically happen when the smartphone discovers that Amy has
moved away.

We assume that a user will always have a mobile device avail-
able. We use the mobile device to (i) determine the location of a
user, (ii) detect physically nearby displays, (iii) quickly set up one



or several displays for temporary use, (iv) establish connection be-
tween the mobile device, the displays and a user’s remote PC so
that user input is transferred to the PC without involving the dis-
play(s) and display output is transferred onto the displays directly
from the PC.

We observe that private and public spaces have an increasing
number of displays. The expected proliferation of Android- and
iOS-based consumer televisions and displays make it realistic to
expect cheap programmable displays to be ubiquitous in many en-
vironments.

The trend towards open programmable displays everywhere com-
bined with small always present mobile devices provides for the
technologies needed to let us do better than today, whether we are at
home, at work, or travelling: information may be displayed every-
where, in sizes suitable for multiple viewers and a lot of informa-
tion may be displayed simultaneously.

The way we perceive ubiquitous displays is different from the
traditional way of perceiving displays. Traditionally, displays are
output devices connected to a single computer and represent a sin-
gle, closed area on which the computer places all its visual con-
tent. This one-to-one relationship between computers and displays
makes it harder to use the displays in the settings we described
above. We need to easily compose several physically close displays
into one larger display to get higher resolution and larger size. We
also need to easily move display content between displays when we
move from one place to another.

There are existing approaches to use more than one display at
a time, either by connecting several displays to one computer in
a multi-monitor setup, or by combining several displays and com-
puters into a configuration such as a tiled display wall[9]. With
these approaches, multiple displays become accessible, and display
content can be split between several displays. However, these ap-
proaches typically assume a fixed number of displays in one room,
and will not support a user moving outside of the room to other
displays. Limited scalability with regards to the number of viewers
and the number of displays when using VNC[16]-style of centra-
lized control of the displays is documented in [19]. While VNC
can support many users viewing the same low resolution desktop,
the frame rate will rapidly drop as the resolution of the desktop
increases.

We can avoid the limitations and drawbacks described above and
achieve better functionality and scaling if we perceive a set of dis-
plays as a continuum; an open, distributed, and decentralized dis-
play surface. We term this a cloud display. Users can define their
own cloud display by composing local and remote displays from
the display cloud - the set of displays with the necessary function-
ality to be enrolled into a cloud display. A cloud display is flexible
with respect to the number of physical displays that are part of it,
the number of displays that are actively displaying content, and the
spatial arrangement. On a cloud display, a user can put any kind
of graphical content produced at his local and remote compute re-
sources, termed visuals. Visuals that are currently supported by our
prototype are VNC desktops and images fetched from web servers.
Other technologies we expect to support include video streaming
and desktop sharing approaches such as Apple’s AirPlay.

To achieve protection, security, and ease of use for a user when
he moves between displays, we use his mobile device to incorporate
nearby physical displays into the user’s cloud display. A key point
is that displays only have access to the graphical output, and then
only through temporary capabilities so that when a user session
terminates, the display(s) cannot continue to pull in data from the
user’s PC. Using the mobile device for user input means that we do
not have to trust the displays; a display cannot easily snoop on the

user’s input and capture passwords or other sensitive information
entered into applications.

We distinguish the Display Cloud model from research on public
displays like those in [2], [3], and [14] in that we have a machine
centric focus. We have not investigated how users react to different
ways of doing and using public apps. Furthermore, we propose
or assume no special public display apps, and we have no floor
control system. We have only researched and documented (i) a
system making one or several displays into shared displays that
users can freely compose and use as display surfaces. It is entirely
up to the users what they display and where on the displays they
display it. (ii) A system where mobile devices play a crucial part
to achieve security by letting the users only trust what they already
trust: their own computers. (iii) A system where mobile devices
provide user input to the computers running the application(s) that
produce output for the displays.

We believe that the Display Cloud system can be used on public
displays for advertisements and informational purposes as well as
by individuals briefly needing larger displays.
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2. USAGE SCENARIOS
Figure 1 illustrates the concepts used in the following usage sce-

narios. The scenarios hint at some functionalities and features not
yet available in the prototype. However, we have found the scenar-
ios useful in describing the range of possibilities, and they help us
identify issues to be solved.

Scenario 1: In the Lab, Giving a Presentation. Ken, a visit-
ing researcher, and his hosts meet in a lab for a presentation. The
lab has a tiled display wall comprised of many displays. Ken uses
his smartphone to detect and add the displays of the display wall to
his cloud display, and arranges them into rows and columns in the
same way as the display wall. Ken has already configured a visual
using his cloud-hosted virtual machine as the visual source. On the
smartphone, he now selects where on the cloud display the output
should take place by moving the visual over the display wall’s dis-
plays. His smartphone instructs the displays overlapping with the
visual to start a viewer and display the remote content. Ken can



interactively resize and reposition the output to cover less or more
area of the display wall, and the smartphone will direct the displays
accordingly. After the presentation is finished, discussion starts and
others move some of their own visuals to the display wall as well.
Ken can resize his visual to make more display space available for
the others’ visuals. When the discussion is over and the partici-
pants leave the lab, their smartphones detect that they are no longer
in the lab, and each display cloud app automatically detaches the
displays from its respective cloud display, and their computers are
told to serve no more content to the display wall.

Scenario 2: At the Hotel, Doing Remote Lecturing. Ken
missed his flight back, and now has to give a lecture from the hotel
room. He adds the large displays in the lecture hall as well as the
hotel room display to his smartphone’s cloud display. He defines
three visuals: one with his laptop presentation as visual source, one
with his laptop’s camera as source, and one with the lecture hall’s
audience-facing camera as source. In the cloud display user inter-
face, he moves the first two visuals to the lecture hall displays, and
the last one to his hotel room’s display. The students can now watch
the lecture slides as well as a video of Ken on the auditorium’s dis-
plays, and Ken can watch the students on the hotel room’s display.

Scenario 3: At the Mall, Hanging Out. A group of teenagers
meets at a mall. The mall has large displays everywhere. It also
has sensors tracking customers. Both are made available to the
mall shops and are paid for through subscriptions. For a customer,
a display is complimentary to use for a brief period when standing
next to it. The displays are used by the shops to display advertise-
ments and coupon visuals, and by customers to display both their
own visuals and interact with advertisement visuals.

When the mall’s sensors and related analytics detect the group
of teenagers, advertisement visuals looking for groups of teenage
customers swarm towards displays near the teenagers and follow
them around the mall. A teenager interested in an advertisement
on a nearby display uses a smartphone to rapidly include the dis-
play to the smartphone’s cloud display. Advertisement visuals, but
not other customers’ visuals, on that display automatically become
available for selection. From the cloud display user interface, the
teenager selects the interesting advertisement visual, and an in-
stance of the advertisement visual is created for the teenager. The
teenager can now interact with this instance of the advertisement
visual. Other teenagers get their own instance, allowing each to
browse and purchase products independently from each other.

After a while, the teenagers move on, their smartphones detect
this and instruct the remote computers to stop sending data to the
displays left behind. Alternatively, the smartphones can automat-
ically add and delete nearby displays to their cloud displays, al-
lowing the users private and advertisement instances of visuals to
follow them around, moving from display to display around the
mall. In both cases the visuals live on, and can be displayed again
on other displays.

3. DISPLAY CLOUD ARCHITECTURE
To make a set of displays into a display cloud, and to make cloud

displays from the display cloud, there are several primary function-
alities we have discovered that we either need or should not have.

A display must be able to interact with a mobile device. The
minimum functionality that must be in place for a display is to let
a mobile device customize it, either by setting parameters for func-
tionality already present, or by accepting new functionality given
to it by the mobile device.

In the first case, the mobile device must trust that the display
does not misbehave by, say, copying graphical content it sees to a
third party. However, it cannot touch the user’s original remote data

or discover user passwords because these are handled exclusively
between the mobile device and the user’s remote computers. In the
second case, the display must trust the mobile device as well. The
mobile device can make it misbehave in obvious ways, like display-
ing unintended information from the internet, or adding the display
computer to a botnet. Sandboxing can help reduce such dangers.
Perhaps one day we will understand how to let the display figure
out what an uploaded functionality will actually do, and based on
this reject it or not.

Presently, we use the first approach, preinstalled functionality,
recognizing that the mobile device cannot trust the display. This is
a simple approach with easy to understand implications: the visuals
can be compromised, but nothing else.

Functionality making all user data received by displays dis-
appear from the display when the user wants to or when the user
moves away from the display. The display will delete all user data
it has received when the mobile device tells it to, and when the user
moves beyond a certain distance from the display. Further, when a
user quits using a display, the display must not be able to continue
pulling in data from the user’s remote computer. This is solved
by letting the remote computer refuse further requests from the dis-
play, either when instructed by the mobile device or if the computer
loses communication with the mobile device.

Mobile device functionality enabling it to dynamically dis-
cover nearby displays. This can be done in several ways using
technologies such as visual tags, NFC, or Bluetooth. We are cur-
rently looking into using QR codes on or next to the displays to
let mobile phones discover them and retrieve the URL or transport
level network address of the displays.

Mobile device functionality to compose displays into a cloud
display. The user tells the mobile device how the displays should
be arranged. The mobile device tells each display what it should
display. This is done at suitable frequencies, say, 25 times a second.
Interestingly, the displays have no knowledge of each other and do
not interact.

Further required mobile device functionality is to instruct the re-
mote PC about making visuals available only to the relevant dis-
plays in the cloud display, to define clones of visuals so that the
same content can be displayed on several displays, and to enable
the user to interact with the remote computer through the mobile
device.

A user’s remote computers have functionality to provide vi-
suals to the displays in a cloud display. Several approaches are
possible: (i) Each display pulls in from the remote computer what
the mobile device tells it to display. (ii) The remote computer
pushes to a display what the mobile device tells it to push. (iii)
The mobile device itself either pulls in visual content from the re-
mote PC, or it tells the PC to push the content to it. The mobile
device then acts as a proxy for the displays in either a push or a pull
mode.

Each approach has advantages and disadvantages which we don’t
have the space to expand on here. Presently, we use the first ap-
proach.

4. PROTOTYPE
We have developed a functioning prototype of a display cloud.

Many core functionalities are already implemented, including cre-
ating a cloud display, displaying visuals on the physical displays
of the cloud display, and moving them smoothly on and between
displays.

The prototype currently supports two approaches to transporting
graphical content from a remote computer to the displays compris-
ing a cloud display. In the VNC[16] approach, each display starts a



customized VNC viewer which then requests content from a VNC
server running on a remote computer. We also use an approach
where each display starts a simple picture viewer that requests im-
ages from a remote computer via HTTP.

Displays run a display daemon to make their functionality avail-
able to mobile devices. It listens for network connections from
mobile devices, and starts visual viewers on behalf of them. Visual
viewers only run as long as a user uses them; they are started and
terminated on demand. This introduces an overhead when view-
ers are started, but it makes sure that no user state is left behind
when the user stops using a display. It also minimizes persistent
resource usage on the displays. Presently, the prototype does not
discover when a user moves away, and the set of available displays
is statically configured.

The user controller composes the cloud display, i.e., it deals with
arranging displays, and creating, cloning, and placement of visuals.
The user interacts with it through a user interface. At the moment,
the user controller and the user interface run on a PC because we
haven’t yet ported them to mobile devices, but the infrastructure has
the necessary support for mobile versions. Most user interaction is
currently scripted to provide repeatability for experiments.

The visual controller manages a visual, i.e., it instructs displays
to start and stop viewers, and it instructs visual viewers which re-
gion of the visual must be shown and where to display it. There
is one visual controller instance for each visual that is managed by
the user controller. The visual controller will be responsible for au-
thorization features and proper interaction between users and visual
sources when we add mobile devices.

The prototype is implemented in Python, except for the view-
ers which are implemented in C. The VNC viewer is a modified
TightVNC viewer, and the image viewer is written from scratch.
All components currently run on Linux.

The visual sources are unmodified TightVNC servers and HTTP
servers. VNC servers support multiple viewers out of the box, so
we only needed to instruct the viewers to request their separate re-
gions to support splitting of a desktop to multiple physical displays.
Our VNC clients can scale pixels to support different resolution dis-
plays. Other remote desktop and content streaming systems that we
currently consider adding to our prototype will use different tech-
niques for multi-resolution support.

5. EVALUATION
We report on a subset of the experiments we have conducted and

their results. When changing a visual’s position 30 times a second,
we measured (i) how much time it took to move it on a single dis-
play and between displays, (ii) the consumed network bandwidth,
and (iii) the CPU load on the display computers. We varied the
number of users from 1 to 21. Each user had a single visual.

The computers were connected through a 1GBit switched Eth-
ernet. To emulate an environment with many displays, we used 28
quad-core PCs with Linux, modified TightVNC viewers and 28 dis-
plays. To easily view and control the experiments, we used PCs that
were located in a single room. We used the displays as if they were
arranged into one row. To emulate a user’s remote PC, we used
a single core PC with Linux and TightVNC server 1.3.10. When
increasing the number of users from 1 to 21, we used a cluster of
identical PCs so that each user had their own remote PC. To emulate
a mobile device, we ran a Python process on a display computer.
User input was scripted to ensure repeatability: a mobile device
process will 30 times a second tell a display to move a visual. The
number of mobile devices was increased from one to 21, spreading
them out so that a display computer would not host more than one
simulated mobile device.

The results show that moving a visual takes about 8ms on a sin-
gle display, and typically 150ms when a visual moves relatively
slowly (below 3 m/s on our displays) from one display into an-
other. The longer time for cross-display movement of a visual is
because the mobile device tells a display to boot an instance of the
visual viewer every time a visual enters a new display. When a vi-
sual moves faster than 3m/s, the time it takes to cross between dis-
plays is much longer, in some cases taking several seconds. When
this happened, we observed that VNC was the bottleneck, spending
most of the time doing protocol initiation. We suspect this is be-
cause we do too frequent connection establishments and teardowns.

When increasing the number of users, each with one visual, from
1 to 21 in the display cloud of 28 displays, the time to move each
visual increased insignificantly.

A single visual consumed 1MB/s bandwidth, adding to 21MB/s
with 21 visuals being displayed and moved. This is well below
the capacity of the 1Gbit/s Ethernet we used. If physical mobile
devices had been used instead of emulating them using processes,
this would not have impacted the measurements significantly be-
cause the data to be visualized does not go through a mobile device,
but directly from a remote PC to the displays.

Each mobile device process consumed less than 10% CPU on
the display computer where it was running. Based on benchmarks
we did, we estimate this to have been about 40% CPU load on a
Samsung Galaxy S3, which has a quad-core ARM processor and
1GB RAM, running Android 4.0.4. Using a native application in-
stead of a Python application is likely to be more efficient than the
estimated 40%.

We have not reported on frames per second (FPS). FPS is lim-
ited by the remote graphics technology we use for the experi-
ments, VNC. VNC frame rates have been reported elsewhere [7,
10]. Frame rates depend upon the number of pixels, the CPU of the
VNC server, and available networks. In our setting we see typical
VNC frame rates from 1-15 FPS while the viewers were moved and
re-drawn at 30 FPS.

6. RELATED WORK
We use the term “ubiquitous display” as has been described by

Molyneaux and Kortuem[13], who give an overview over possible
technologies for ubiquitous displays, and research challenges.

Work on distributed displays and in particular display walls
brought forth approaches to provide big centrally managed virtual
displays to programmers and users, for example SAGE[8] and Dis-
tributed Multiheaded X[12]. Seamless screen sharing over several
displays, taking not only different display resolutions but also ge-
ometrical distortions into account, has been investigated by Saku-
rai et al[17]. These systems usually have a static set of displays,
whereas our approach aims at scalability of display usage and shar-
ing to many users in many rooms, using a subset of many, possibly
even remote displays.

Beyond dealing with distributed displays alone, many works
have focused on enabling collaboration between users on large
single or distributed displays through screen sharing and more,
for example Dynamo[4], WeSpace[6], Impromptu[1], and Virtu-
ally Shared Displays[20]. These particular works differ from ours
mainly in that they focus on enabling collaboration including, for
some systems, file sharing, between users in one room.

All approaches above do not concern themselves with users com-
posing their own view on the set of available displays, i.e., there is
no conceptual equivalent to a cloud display. Mobile devices with
their special sensing functionalities do not exist or do not play es-
sential roles in their architectures. Several systems use the users’
laptops as interaction device and content provider, whereas we sep-



arate these roles (although visuals can be hosted on smartphones,
too). This makes our system more useful in a mobile environment
because a user only needs to carry a smartphone to pull in content
from anywhere. Another difference is that most of the above sys-
tems (except Dynamo) are tailored towards private environments
or the workplace, not public spaces where devices and users can
not be trusted. Furthermore, the referenced papers do not report on
scaling with respect to many concurrent users or many displays.

A different approach to making displays available to users more
dynamically is Dynamic Composable Computing[22], where log-
ical computers are composed ad-hoc from a set of available de-
vices. Unlike the display cloud approach, DCC goes beyond con-
cerning itself only with display mechanics: to facilitate user col-
laboration, it also supports interconnecting other services such as
different users’ file systems and clipboards. When it comes to dis-
play mechanics, in DCC, a (stationary or mobile) device’s frame-
buffer can be “connected” to a nearby display. However, DCC has
no equivalent to a “cloud display”, where users compose a virtual
display landscape out of several local and possibly remote displays:
while DCC includes the ability to connect several adjacent displays
to form one logical display[11], this larger virtual display is man-
aged as one large rectangular framebuffer and can therefore not be
arranged as flexibly as displays in a cloud display. Further, dis-
plays in DCC are always in exclusive use by one user, whereas in
a display cloud displays are always shared, and concurrent use, i.e.
different users using different areas on one display, is possible.

A related idea to the former approach is to use virtualization
to compose a “virtual platform” out of nearby resources with the
STRATUS[5] system. Such a virtual platform can consist of a dis-
play driven by some computer, a CPU that is located on another
computer (or even the user’s mobile device), and other periphery
in the network. The user brings a virtual machine using his mobile
device, and STRATUS migrates the virtual machine onto a custom
assembled virtual platform. This enables the user to not only show,
but also host, graphical content, desktops etc. in the local environ-
ment, without having to rely on the user’s resource-constrained mo-
bile device, or accessing resources over long distances. However, a
STRATUS virtual platform is vulnerable if any of the hosting com-
puters are compromised; in our approach, only the shared graphical
content and information about how to reach it is shared with public
computers. Furthermore, STRATUS does not support swiftly mov-
ing graphical content across displays, sharing one display between
several users, or using several displays to compose a cloud display.

No approach mentioned so far has its main focus on enabling
users to interact with their own applications on public displays,
which present challenges of their own. An early work in this area
is the "personal server" by Want et al[21]. Here, the user’s mobile
device, a custom display-less prototype, hosts the user’s applica-
tion, makes its functionality available through a webserver, and a
browser running on the public display accesses this webserver to
show the application to the user. The personal server device the
user carries has only very limited user input facilities, so the user
normally uses the computer controlling the display for input. In
consequence, the public display must be trusted with user input.

Later, when mobile device technology had progressed, Raghu-
nath et al introduced the “Inverted Browser”[15], in which the
user’s mobile device pushes content to a modified web browser run-
ning on the public display. Here, the user uses his mobile device
for interaction too: input on the mobile device is being forwarded
to the public display. While this avoids using input devices on the
public display directly, it does not alleviate the associated security
threat: user input can still be compromised by the public display.
Both personal server and inverted browser have in common that

the user’s mobile device plays the role of the application host, so
that applications are confined to the resource-constrained mobile
device. In the display cloud approach, however, applications can,
but do not have to be hosted on the user’s mobile device, allowing
for more resource-demanding applications.

When cloud computing for hosting users’ applications entered
the scene, Satyanarayanan et al introduced Cloudlets[18], where
virtual machines hosting the user’s applications are synthesized
near the physical location of both the user and the (single) pub-
lic display. For this, the Cloudlets system uses on-site compute
hardware, for example some computers in a coffee shop. A virtual
machine is assembled from a “base” VM image that is available
already (for example a vanilla Linux distribution) and an “overlay”
image that the user brings along on his mobile device. After boot-
ing the assembled VM, the user interacts with it using his mobile
device, and the public display shows the VM’s display output. This
approach enables the user to leverage the computation power of
stationary hardware (applications need not be hosted on his mobile
device), while at the same time allowing for applications that de-
mand low latency between input device, application, and display
(the application runs physically nearby). In our approach, these
latencies are indeed higher, as the compute resources hosting visu-
als are often not co-located with the user and the public displays
he is using. However, as there is no restriction in our approach to
where visual sources can be hosted, a display cloud user could use
cloudlets to host visual sources he then uses in his cloud display.
Trade-offs to using cloudlets include that assembling a virtual ma-
chine before and tearing it down after use can take a long time,
inducing a significant latency for the user. Further, a cloudlet user
must trust the on-site computers with his virtual machine.

7. DISCUSSION AND CONCLUSIONS
A primary assumption of the display cloud model is that a user

can only trust his own devices and not the display computers, and
vice versa. This distinguishes the display cloud model from ubiq-
uitous computing approaches where the environment detects the
user and provides interaction mechanisms for him, and sometimes
allows the user to upload code to customize the environment. Con-
sequently, we believe that the display cloud model is well suited for
public displays with many mobile users.

To achieve good scaling with the number of users, the display
cloud model has no management and control bindings between dif-
ferent users’ cloud displays. While visuals from different users can
share physical displays and networks, no coordination between vi-
suals from different users is done. Implications of this are that the
display cloud model has no obvious limits to growth unless too
many users end up using the same networks and the same displays.
In the first case this can be solved by increasing the network band-
width. In the second case we observe that it is highly unlikely that
very many users will share the same displays because only a hand-
ful of users will fit physically around a display, limiting naturally
how many visuals it will be asked to display. Even if very many
users could use the same few displays simultaneously, they have no
reason to do so because the visuals will conceal each other.

For individual users, the display cloud model relies on a strong
centralization handled by a feature rich mobile device controlled
and trusted by the user. The mobile device takes care of all interac-
tion between the user and the remote computers, between the user
and the displays, and frequently, say, 30 times a second, controls
the interaction between remote computers and displays. Interest-
ingly, despite all the responsibilities centralized to the mobile de-
vice, it is not a bottleneck. This is because the centralization is per
user only.
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ABSTRACT
The mobile computing experience would improve if users
could switch seamlessly from one device to another, with
both data and computation state preserved across the switch
without apparent delay. This paper proposes VMsync, a
system for synchronizing the state of live virtual machines
(VMs) among mobile devices. VMsync seeks to incremen-
tally transfer changes in an active VM on one device to
standby VMs in other devices, so as to maintain a consistent
VM image and minimize switching latency. However, con-
straints of the mobile environment make these goals difficult
to achieve and raise many research questions. We present
our preliminary design for VMsync and a feasibility study
aimed at determining how much data would need to be
transferred under different mobile workloads and synchro-
nization policies. For example, through experiments with
a Xen VM running Android and playing a YouTube video,
we show that sending dirty memory pages transfers 3 times
more data than sending only the bytes that actually changed
in those pages. Overall, we conclude that VMsync is a fea-
sible approach deserving of further research.

1. INTRODUCTION
People increasingly rely on mobile devices in their every-

day lives, often multiple devices such as a smartphone and
a tablet. The utility of these devices would improve if users
could switch seamlessly from one device to another, in par-
ticular if they could continue using applications on the sec-
ond device exactly where they left off on the first device,
with both data and computation state preserved across the
switch without apparent delay. For example, a user who
starts watching a video on a smartphone may want to con-
tinue watching the video on the larger display provided by
a tablet.

A limited form of such device switching is currently avail-
able through per-application data synchronization. For ex-
ample, Apple’s iCloud service synchronizes changes to calen-
dars, address books, and a few other supported applications.
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Some other applications provide their own synchronization
facilities. However, this approach requires separate and of-
ten specific support to be built into each application. A gen-
eral solution that works for all applications would scale bet-
ter to the rapidly growing set of mobile applications, which
already number in the hundreds of thousands [9].

This paper proposes VMsync, a system for synchroniz-
ing the state of live virtual machines (VMs) among mobile
devices. System-level VMs have been widely proposed to
improve the security, manageability, and other aspects of
mobile computing [3, 5, 6, 8, 12]. In the context of de-
vice switching, VMs encapsulate both data and computa-
tion state for a complete operating system and all its appli-
cations. Therefore, synchronizing VM state between mobile
devices automatically synchronizes all application state.

VMsync seeks to incrementally transfer changes in an ac-
tive VM on one device to standby VMs on other devices, so
as to maintain a consistent VM image and minimize switch-
ing latency. This way, when a user switches between devices,
there should only be a small amount of data left to trans-
fer before the VMs on both devices become fully consistent,
and the switch can be made quickly enough that the user
will not notice any delay.

However, constraints of the mobile environment make these
goals difficult to achieve and raise many research questions.
For example, intermittent connectivity may delay dissemina-
tion of changes. Similarly, bandwidth, processing, storage,
and energy limitations introduce challenging tradeoffs be-
tween simple schemes that transfer complete memory pages
or disk blocks, and more sophisticated schemes that trans-
fer only the portions of those pages and blocks that have
actually changed.

This paper presents our early efforts towards a complete
VMsync design, implementation, and evaluation. After dis-
cussing the most relevant prior work, we describe our prelim-
inary design. The VMsync architecture involves a daemon
running outside the guest VM on the active device. This
daemon inspects the memory and file-system state of the
VM and sends recent changes to a server in the cloud. The
server then forwards the changes to standby devices.

Finding appropriate policies for how to represent changes
and when to send them are central research issues in this
work. For example, should the device send whole dirty
pages and blocks, or only the changed portions? Should
the device send periodic checkpoints or wait for contextual
hints? Should the server forward changes as it receives them,
or post-process them to reduce the amount of data sent to
standby devices?



We also present a feasibility study aimed at determining
how much data would need to be transferred to maintain
a consistent VM image across devices, under different mo-
bile workloads and synchronization policies. We use the size
of these data transfers as a rough proxy of various costs in-
curred during VM synchronization: bandwidth, latency, and
energy. We believe that bandwidth, latency, and energy
costs will be to some degree proportional to data transfer
size. We plan to explicitly measure these different costs in
a future full-fledged implementation of VMsync.

In the current work, we measure changes to the memory
and file-system images of a Xen virtual machine running the
Android operating system. We drive the experiments with
popular Android applications, and report how many bytes
would be transferred for a range of policies. For example,
when playing a YouTube video, we show that sending dirty
memory pages transfers 3 times more data than sending only
the bytes that actually changed in those pages. These mea-
surement results constitute a modest research contribution,
as we are not aware of previous measurements of VM-image
changes using such mobile-specific workloads.

Overall, we conclude that VMsync is a feasible approach
deserving of further research. Our measurements show that
there are significant opportunities to save costs by choosing
certain synchronization policies over others. At the same
time, many questions remain to be answered before we know
which policies are most appropriate in which situations.

2. RELATED WORK
System-level virtualization of mobile devices has been pro-

posed and implemented by both researchers [5, 8, 3] and
commercial entities [6, 12]. We agree with their conclusions
that virtualization improves the security and manageability
of mobile computing, and add our insight that virtualization
would also enable seamless switching between devices.

There are several established techniques for migrating VM
state between hardware hosts, but we find them unsuitable
for our purposes. For example, live migration [4] transfers
a VM image while the VM continues to run in the origi-
nating host, only suspending the VM for an imperceptible
period while control is finally switched to the receiving host.
However, live migration transfers the complete VM memory
image each time, an operation that generally involves hun-
dreds of megabytes if not gigabytes of data, which would
be prohibitive over a slow wireless link. In addition, live
migration assumes a high-speed shared storage medium be-
tween the hosts involved, so that file-system state need not
be transferred at migration time. Mobile devices do not
enjoy such high-speed shared storage.

A recent refinement on live migration uses delta compres-
sion to reduce the amount of data transferred in the later
stages of migration [10]. However, it still sends the complete
contents of memory at least once before beginning to apply
differencing techniques to the pages that have changed in the
course of the migration. It also still assumes a high-speed
shared storage medium.

Work on opportunistic replay [2] proposes an approach for
decreasing the amount of data transferred during VM mi-
gration in low-bandwidth environments. This approach logs
user-input events (e.g., keyboard presses and mouse clicks)
during VM execution, then transmits and replays this log
on a second identically-configured VM to produce nearly the
same VM state. Because only user events are logged, events
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Figure 1: VMsync Architecture

triggered by additional hardware devices or background net-
work connections may produce unmonitored state changes.
These changes remaining after replay are also transferred
and applied, resulting in a final identical VM. Though op-
portunistic replay is a potential mechanism for synchroniz-
ing multiple VMs in the VMsync scenario, there are many
policy decisions left to explore to create a mobile VM syn-
chronization solution that is imperceptible to the user. Fur-
ther studies on opportunistic replay using today’s network-
intensive mobile applications and operating systems would
also be needed to determine how well the approach would
work in the VMsync scenario.

The Kimberley system [13] introduced the concept of pre-
distributing a base VM image to relevant hosts, then sending
only the differences from the base when wanting to move a
VM from one host to another. It calls for suspending the
VM on the originating host, calculating differences, transfer-
ring them, and applying them, before resuming the VM at
the destination host. We adopt the idea of pre-distributing
a base VM, but go further in pursuing incremental synchro-
nization of live VM state among multiple devices without
perceptibly suspending the VM.

3. PRELIMINARY DESIGN
The goal of VMsync is to maintain a consistent VM image

across multiple devices while minimizing the time it takes for
users to switch between devices. We consider this time the
switch penalty. The simplest approach would perform a live
migration of the guest VM at the time the user would like to
switch devices, though this would incur a data transfer cost
on the order of the VM size. For example, live migration of
a Xen VM with 800 MB of memory can transfer as much as
960 MB (1.2x) [4].

In the case of wireless networks, VM state changes could
occur faster than bandwidth allows, leading to higher switch
penalties. Even with delta compression [10], live migration
transfers on the order of the VM memory size during its
initial stages, limiting its use in networks confined by data
caps and bandwidth limitations. Therefore, along with re-
ducing the switch penalty, we must also minimize the total
amount of data transferred between devices. In VMsync we
propose an incremental synchronization method to migrate
a VM across mobile devices that attempts to minimize both
the switch penalty and the data transferred.

Figure 1 represents the architecture of VMsync, a system
made up of multiple host devices with virtualization support



Figure 2: Memory contents change significantly with
each new web page loaded.

and a resource-rich server in the cloud, used as a synchro-
nization point between devices. Devices registered with a
VMsync instance are provisioned with a single base guest
VM, like in Kimberley [13], containing a typical mobile de-
vice operating system such as Android. The hypervisor of
each device handles syncing operations through a privileged
daemon which monitors the guest VM state.

In our initial design of VMsync, only one active VM will
be running at any given point in time to ensure that VMs
do not diverge. This active device will propagate changes
of both memory and file system state to the synchroniza-
tion server over the period of time in which the device is
active. We consider this process a checkpoint. Every other
VM, considered standby VMs, will be paused and period-
ically updated via the synchronization server if the device
is online. Devices which are not connected to the network
or have not been synchronized will be considered to be in
a stale state and must be synchronized before a user can
switch to that device. The longer a device is offline or not
updated, due to limited bandwidth or policy decisions, the
higher the switch penalty.

The synchronization daemon running on the end device,
which monitors the guest VM for changes, must be designed
in such a way that balances the tradeoff between data trans-
ferred and computational overhead. For example, a naive
low-computation approach would be similar to live migra-
tion, e.g., simply propagate every memory page and disk
block that has been changed since the last checkpoint. Dur-
ing our feasibility study in the subsequent section, we show
that this method would propagate a large amount of data
that has not actually changed. This raises the question
of how to efficiently synchronize only the bytes that have
changed since the previous checkpoint.

Since mobile devices contain an increasing amount of file-
system storage, 64 GB or more, it would be feasible to main-
tain a snapshot of the previous memory checkpoint on disk.
Today’s mobile devices, such as smart phones and tablets,
contain a limited amount of memory, typically maxing out
at around 2 GB. This would allow a byte by byte comparison
or an on-device differencing algorithm to identify the bytes
that have changed since the last checkpoint. Alternatively, a
network-based differencing algorithm such as rysnc could be
used, though this may require additional network and com-
putational overhead. Due to the large size of the file system,
a copy-on-write disk image or customized block driver could

Figure 3: File-system contents change when the web
browser caches data.

be used to efficiently monitor file-system changes and syn-
chronize file-system state. Previous work on opportunistic
replay [2] and delta compression [10] could also be adapted
for use during VMsync’s checkpointing step.

Though the above update mechanisms are not novel, VM-
sync introduces many policy questions that can only be an-
swered with a thorough design, implementation, and evalu-
ation of the system. For example, in order to minimize the
switch penalty, should the active device propagate changes
periodically over time, use specific operating system events
to infer the best time to propagate changes, or use a mix of
these two policies? An event, such as putting the phone to
sleep via the hardware power button, may be a good indica-
tor that the device will no longer be used for some time and
the user could potentially switch to another device. On the
other hand, if the user switches devices before this event,
the state change from the last checkpoint may be large and
will thus increase the switch penalty. In this case, a periodic
checkpoint would have helped. We can also use other fac-
tors such as location, nearby device presence, battery life,
CPU utilization, network bandwidth, bandwidth caps, etc.,
as triggers for state propagation.

There are also various policy decisions that must be made
on the synchronization server. For example, when should
devices be updated with the latest state information? One
policy may decide that only devices connected to a network
with sufficient bandwidth can receive changes. For devices
that have been offline for some time, the server can merge
multiple checkpoints from the active VM to minimize the
amount of data transferred. In some cases it may also be
possible to bypass the synchronization server by using local
wireless links such as Wi-Fi Direct, Bluetooth, or NFC to
migrate changes directly between devices.

Finally, the variety of hardware configurations in mobile
devices introduces challenges when migrating a VM from
one device to another. We have not fully addressed this de-
vice heterogeneity issue, but we note that it is common to
other mobility schemes based on VM migration [7, 11]. On
the positive side, modern mobile operating systems such as
Android and Windows Phone 8 are designed for extensibil-
ity, thus providing support for many types of hardware built
by different manufacturers. Therefore, it seems feasible in
the future to extend these operating systems to detect and
adapt to hardware changes at runtime.



Figure 4: Most changes to memory occur during the
initial loading of the video, with some final changes
when the application closes.

4. FEASIBILITY STUDY
To measure the feasibility of VMsync, we analyzed changes

to memory and the file system under various mobile work-
loads. Our goal was to determine how much data would be
required to maintain a consistent VM state across multiple
devices. As workloads, we chose applications that we believe
are representative of current mobile phone use: web brows-
ing, video playback, audio playback, and audio recording.

We performed our study on the Android platform. Our
VM is an Android-x86 4.0.4 (Ice Cream Sandwich) [1] guest
domain running above the Xen 4.1.1 hypervisor. The An-
droid VM uses an Android Open Source Project (AOSP)
3.0.8 kernel compiled for x86 and with Xen paravirtualiza-
tion support enabled. The guest domain is allocated with
512 MB of memory, 1 virtual CPU, a 512 MB read-only sys-
tem image that contains the Android software stack and is
pre-distributed to all devices, and a 512 MB read/write data
partition that is monitored for changes during experiments.
The host machine is a desktop-class machine with a quad-
core Intel Core i7 860 processor executing at 2.8 GHZ and
12 GB of RAM. Though this host system is in no way rep-
resentative of a mobile device, we are measuring changes to
memory and file-system usage under mobile workloads, not
computation overheads or other effects influenced by host
capacity.

Our synchronization daemon executes outside of the guest
domain within Domain0, and uses xenctrl APIs to map the
guest domain’s memory prior to starting a workload. At the
beginning of the workload, we pause the VM and save a copy
of both memory and the data partition. This represents the
original state of the VM prior to running a workload. Over
the course of a workload, we analyze the memory and file
system states across various checkpoints. For each check-
point, we pause the VM and compare the current memory
and file system state with the original copy we saved in the
beginning of the workload. We also save the state of each
previous checkpoint to measure changes over specified inter-
vals of time. This procedure simulates an implementation of
VMsync, where a device would periodically sync the current
changes with all devices. We can thus understand the vol-
ume of data changed across an entire workload for different
VMsync policies.

Figure 5: File-system contents change continuously
during audio recording.

Measuring Checkpoint Sizes
In each of Figures 2–5, we show four curves, each corre-
sponding to a different checkpointing policy. The top curve,
labeled Dirty Orig, represents the case where each memory
page or disk block that was changed from the beginning
of the workload is synced. The second curve, labeled Diff
Orig, only counts the bytes changed from the beginning of
the workload, simulating a differencing syncing mechanism.
The third and bottom curves, Dirty Prev and Diff Prev, fol-
low similarly, but are measured with respect to the system
state of the previous checkpoint. For example, Figures 2
and 3 shows the number of megabytes that would be trans-
ferred while executing a checkpoint every second during a
web browsing session using the default Android browser.

Our web browsing workload navigates through a popular
news article on m.cnn.com. The workload sleeps a predeter-
mined number of seconds (45) before scrolling down the page
as a normal user would. Then the workload sleeps again (25
seconds) to simulate reading the end of a page before mov-
ing to the next page of the article. Each time the browser
loads a new web page, we see a significant change in both
memory and file system activity. The changes in the file sys-
tem are due to the fact that the Android browser maintains
a cache of previously viewed web pages and thus there are
additional changes each time a new page is loaded.

Figure 4 shows the checkpointing effects during a stream-
ing video using the YouTube app for Android. In the case
of YouTube, the application is launched and the video is
buffered during the beginning of the workload. During video
playback, many pages are modified but the overall change
in the system remains steady. An important observation
is that throughout all our workloads, the most significant
overall change to memory (Diff Orig curve) also occurs at
the beginning of the workload. After this initial change, the
changes following are fairly minor. For this reason, if there
is enough time to propagate the changes caused by start-
ing an application, migrating to a different device later in
the use of an application should only incur a small switch
penalty. On the other hand, if a user switches to a second
device within a few seconds of starting an application, the
amount of time needed to sync the system state would be
much longer and possibly noticeable by the user.

To observe the effects of a file-system intensive workload,
we used the Hi-Q MP3 Voice Recorder app to record 3 min-



Figure 6: Transferring complete dirty memory pages
involves three times more data than necessary.

utes of audio within our VM. This workload continuously
writes to the file system and finishes with a final 1.3 MB
change to the file system. Figure 5 shows the results when
executing a file system checkpoint every 1 second. When
compared to the original system image, the changes over
the course of the workload are continuously increasing over
time. Every checkpoint, the changes between the previous
state are consistently minimal, but add up to the final total
change at the end of the workload. Though a user may not
switch devices while recording an audio session, this repre-
sents the feasibility of switching between devices when data
is being constantly written to the file system.

Measuring the Total Bytes Required for Sync
For each workload, we vary the time between checkpoints
from 1 second to 5, 10, 30, and 60 seconds. Due to the
fact that each workload runs for a fixed amount of time,
the number of checkpoints decreases as the amount of time
between checkpoints increases. Because of this, the over-
all shape of each checkpoint curve is similar, but smoother
and less fine grained over time. Figures 6, 7, 8, and 9 com-
pare the total amount of data required for each checkpoint-
ing policy against the time interval between checkpoints.
While we are not measuring the switch penalty directly in
units of time, the size of data transfers under various poli-
cies gives us some indication of which policies would have
higher or lower switch penalties. Final Diff represents the
exact number of megabytes changed at the end of the work-
load, where Final Dirty is the total number of megabytes
required if you synced each dirty page or block. When us-
ing a policy that compares against each previous checkpoint,
we sum the number of megabytes changed for each check-
pointing round and report the result as the total number of
megabytes changed for that policy. Incr Diff represents the
total number of bytes changed, where Incr Dirty represents
the total number of complete pages that have changed over
incremental checkpoints.

In all cases, the Final Diff and Final Dirty results re-
main constant (within a standard deviation of the work-
load) across varying time intervals. As the time interval
between checkpoints increases, the number of checkpoints
decreases, lowering the total number of megabytes for incre-
mental checkpoints. Because memory state changes very fre-
quently while a workload is running, checkpointing memory
state often, such as every second, transfers large amounts

Figure 7: Transferring only the bytes that have
changed is also advantageous in the file-system case.

of data. In the case of video playback, shown in Figure
6, propagating each memory page that has changed would
require three times the amount of data compared to prop-
agating the difference of each page. In fact, propagating
dirty pages could use up to 35 times the amount of data
than necessary in the worst case, measured from our audio
recording workload. In all cases, propagating only the bytes
that have changed at the end of the workload uses the least
amount of data, but could cause a severe delay if the user
decides to switch devices while running an application. It
is also important to note that both differencing policies, fi-
nal and incremental, may incur significant time and space
overhead. We plan to measure these overheads and explore
the trade off between each in a full-fledged implementation
of VMsync.

Compared to memory state, the changes in file system
state are fairly minimal, even in a file-system intensive work-
load such as audio recording (Figure 8). As the time between
checkpoints increases, propagating dirty blocks every check-
point converges closely to the actual number of megabytes
changed. This is because during sequential writes, data is
written to a single block at a time and the number of dirty
blocks ends up being proportional to the total number of
bytes changed. For writes spread out across multiple differ-
ent blocks, such as in the web browsing workload in Figure
7, propagating dirty blocks incurs a cost about five times
higher than performing a final diff.

Since mobile devices users can perform multiple tasks at
once, we performed a combined workload which added back-
ground music, using the default Android music player, to
our web browsing workload. In general, playing audio in
the background has minimal effect on the system state. As
shown in Figure 9, the size of changes to both the memory
and file system state are nearly the same as web brows-
ing alone, leading us to infer that audio playback continu-
ously modifies a fixed number of memory pages and does
not change the file system.

Following are some overall findings from this study. One,
naive policies that only propagate dirty pages or blocks trans-
fer large amounts of data and would not be feasible for mo-
bile devices and networks. Two, large savings result from
performing differences of previous checkpoints in order to
propagate only the bytes that have changed. We also see
that increasing the amount of time between checkpoints will
save bytes but may require a higher switch latency if a user



Figure 8: Waiting before propagating dirty file-
system blocks approaches the cost of a differencing
policy for apps that perform sequential writes.

Figure 9: Playing music in the background of a web
browsing session has minimal effect on the overall
system state.

switches devices during that time. With regards to mem-
ory, the most significant changes occur in the beginning of
a workload and subsequent changes are somewhat minimal.

5. CONCLUSION
We have presented our early work on VMsync, a system

for incrementally synchronizing live virtual machine state
among mobile devices. VMsync aims to enable users to
seamlessly switch between devices with both data and com-
putation state preserved across the switch without apparent
delay. We described our initial design for identifying changes
to the memory and file-system images of an active VM on
one device, then propagating those changes to standby VMs
on other devices via a synchronization server in the cloud.
We also presented our measurements study of how much
data would need to be transferred to maintain a consistent
VM image across devices under different workloads and syn-
chronization policies. From our efforts to date, we conclude
that VMsync is a feasible approach with many open issues
deserving of further research.
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1 Introduction
Web access on mobile platforms already constitutes a significant (>
20%) share of web traffic [3]. Furthermore, this share is projected
to even surpass access from laptops and desktops [11]. In con-
junction with this growth, user expectations for the performance
of mobile applications and websites is also growing rapidly [15].
Surveys show that 71% of users expect websites to load almost as
quickly as their desktops and 33% of annoyed users are likely to go
to a competitor’s site leading to loss of ad- and click-based revenue
streams [1].

However, the performance of the mobile web today is quite poor.
Industry reports show that the median web page takes almost 11
seconds to load over 3G networks even on state-of-art devices such
as iPhone5 and the Samsung Galaxy S3 [2]; LTE is only marginally
better at improving the latency. The key challenge here is that,
unlike traditional devices, mobile devices are fundamentally con-
strained in several ways in terms of networking, compute, and stor-
age capabilities that can cause high page load times [27, 26].

We are far from being alone or the first to identify these trends.
In fact, there has been renewed interest in optimizing web per-
formance focused specifically on mobile devices as evidenced by
the proliferation of: a) public measurement reports and repositories
(e.g., [7]), b) new optimized protocols (e.g., [13]), c) startups that
help providers to generate mobile-friendly web pages (e.g., [10])
and to increase mobile performance (e.g., [14]), d) proprietary op-
timizations (e.g., [4, 12]), and e) better browsers (e.g., [24, 28]).

Despite the growing realization and recognition of these issues,
surveys shows that over 90% of websites are not mobile friendly
today [8]. We speculate that this disconnect between the need to
customize for mobile devices and the actual adoption of proposed
solutions stems from two related factors. First, mobile-specific cus-
tomization seems to be expensive and often involves manual in-
tervention, thereby restricting its adoption only to high-end web-
site providers. For example, the fraction of websites with mobile-
optimized versions drops from 35% in the top 200 to 15% among
the top 2000.

The second, more fundamental, issue is that, the desire to de-
liver rich services (and associated ads and analytics) has, over the
last few years, dramatically increased the complexity of websites;
rendering a single web page involves fetching several objects with
varying characteristics from multiple servers under different ad-
ministrative domains [16]. This complexity leads to poor inter-
actions with mobile-specific constraints due to several factors such
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as the need to spawn many connections, high RTTs on wireless
links, and time to download large objects on low-bandwidth links.
Furthermore, this is accompanied by a corresponding increase in
the complexity of website generation (especially for dynamic con-
tent); thus, re-architecting them for mobile-friendly designs would
require complete overhauls or parallel workflows, further moving
the mobile web out of the reach of low-end website providers.

Our overarching vision is to democratize the ability to gener-
ate mobile friendly websites, enabling even small web providers to
support mobile devices without investing significant resources to do
so. While others have focused on automatically adapting web page
layouts for mobile devices [17] and on optimizing the load times of
Javascript-heavy websites [22], our focus is on reducing the high
load times seen on mobile devices for generic web pages. Given
the concerns surrounding website complexity and the need to avoid
overhauling existing content management workflows, we take a
pragmatic approach and cast the goal of customizing websites for
mobile devices as an utility maximization problem. Specifically,
we can view this as a problem of selecting a subset of high utility
objects from the original website that can be rendered within some
load time budget for user tolerance (say 2–5 seconds [18, 19]). We
can then either block or de-prioritize the loads of low utility objects
to reduce user-perceived page load times [9].

While this approach sounds intuitively appealing, there are three
high-level requirements that need to be addressed before the bene-
fits can be realized in practice:

• Structure-awareness: Given the complex inter-dependencies be-
tween objects in most web pages today, blocking or delaying
the load of one object may result in several other dependent ob-
jects also being filtered out or delayed, e.g., if a Javascript is not
fetched, neither will any of the images that the script would have
fetched. Thus, even though an object may not directly contribute
to the user experience (not visible to users), it may be critical for
downloading useful content.
• Utility-awareness: Indiscriminate filtering of objects from a web

page may prune out content critical to the website’s functionality
and render the mobile version of the web page useless. We need
mechanisms for predicting the expected utility that an user gets
from different objects on a given web page. Two concerns arise:
(1) we may not know the utility a user perceives in advance be-
fore actually downloading the object, and (2) users may differ in
their preferences, e.g., some users may dislike ads and images
but others may perceive value in these.
• Practical optimization: Object selection problems to maximize

some utility subject to budget/dependency constraints are typ-
ically NP-hard. Additionally, due to the complex policies in-
volved in how browsers parallelize the loading of objects on a
web page, it is hard to estimate the resulting page load time when
a particular subset of objects on a web page are loaded.

Corresponding to each of these requirements, we describe key
practical challenges and preliminary results from our current efforts
in designing a WebSieve prototype: (1) Naive solutions for depen-
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Figure 1: Page load times on sites with/without mobile versions.

dency extraction are unlikely to work in face of dynamic content
and needs systematic solutions to extract causal relationships, but a
practical “block-and-infer” strategy appears promising (§4); (2) We
report experiences from a user study suggesting that any framework
for assigning utilities to objects needs to account for user-specific
preferences (§5); and (3) Despite the theoretical intractability, we
can find practical near-optimal solutions in conjunction with ap-
proximate load time estimates (§6).

We do acknowledge that blocking low utility objects to reduce
page load times may affect the page’s functionality; e.g., a but-
ton may not be functional if an associated Javascript has not been
loaded or the layout may be undesirable if the CSS has not been
loaded. The main challenge here is the need to automatically cap-
ture the complex inter-dependencies that exist on today’s web pages.
While we discuss potential approaches here to reduce the likeli-
hood of breaking web page functionality, striking the right balance
between load time, utility, and functionality forms the crux of our
ongoing work.

2 Motivation
Opportunity to reduce load times: We consider a dataset of 2000
websites from Quantcast’s list of the top million websites—400
each, chosen at random, from the rank ranges 1–400, 400–1000,
2000–2500, 5000–10000, and 10000–20000. We identify which of
these websites have mobile-optimized web pages. Figure 1 com-
pares the load times 1 on the Sony Xperia smartphone for randomly
chosen subsets of 100 websites that have mobile versions and 100
websites that do not currently have mobile versions. (The measure-
ments were made over a 3G connection in a residential location at
Riverside.) First, we see that the sites that have mobile versions
have significantly lower load times compared to those do not. Sec-
ond, the load time distribution for websites that do not have mobile
versions is comparable to those for the normal/desktop version for
the websites that have mobile-optimized versions. In other words,
these unoptimized sites have not intentionally chosen to avoid cus-
tomizing their websites because their load times are already low—
there is significant room for reducing the load times. Third, 60%
of the mobile-optimized websites still take more than 10 seconds
to load, suggesting that even these could benefit from our proposed
optimizations. These results show that there is significant opportu-
nity for reducing the load times of web pages on mobile devices.

Website complexity causes high load times: A key contributing
factor to high page load times is the increasing complexity of web
pages. Our recent work [16] showed that, on average, loading a
web page requires the browser to fetch over 50 objects from more
than 10 servers. Such complexity is not restricted to top-ranked
websites, but it exists across web pages in all rank ranges—even
among sites in the 10000 to 20000 rank range. In fact, our prior
work showed that the number of objects on a page is the most cor-

1A page’s load time is the time at which the onLoad event is fired
when the page is loaded on the default Android browser.

Version % responses citing significant
loss of useful information

Set1 Set2 Set3 Aggregate
Flashblock 20 20 20 20
NoScript 0 20 70 40

Table 1: User study to quantify usability impact of naive customiza-
tion techniques. Numbers are reported with one significant digit
given dataset’s size.

related with load time [16, 27]. Therefore, in order to reduce page
load times on smartphones, a key step is to have a systematic solu-
tion to “tame” this web page complexity.

Naive approaches to tame complexity do not work: To reduce
the impact of a web page’s complexity on page load times, we need
to either load only a subset of the objects on the page or prioritize
the loads of “important” objects. A strawman solution is to filter
all objects of a particular type that users may consider to be of
low utility. For example, we can use browser extensions such as
Flashblock and NoScript to block all flash and script objects, and
all other objects that these cause to be loaded. To analyze how
well this would work, we ran a preliminary user study over several
websites. We chose three subsets of 10 websites from the top 1000
websites ranked by Quantcast—Set1 comprised 10 websites chosen
at random, Set2 was the top 10 sites based on the number of unique
origins contacted, and Set3 consists of 10 randomly chosen mobile-
optimized websites.

We conducted a survey across 33 participants by hosting the
website http://website-comparison.appspot.com. We asked users to compare
a screenshot of the default version of these 30 sites with screenshots
for two alternatives—those obtained with the Flashblock or the No-
Script extension enabled (We use the extensions with their default
configurations.) Table 1 shows that the use of either Flashblock
or NoScript would significantly impact user experience. While
users may not consider scripts included in a web page as impor-
tant, blocking those scripts impacts user experience since the ob-
jects fetched by executing those scripts are blocked as well. Thus,
to block or de-prioritize low utility content on a web page, we need
to take into account the role played by every object on that page as
well as the dependencies between objects.

On the other hand, though ads and objects related to analytics
may not be critical to the user experience, blocking these objects
can be detrimental to the interests of website providers. Therefore,
reducing web page complexity by blocking objects also needs to
take into account the implications of doing so on provider interests,
e.g., the impact on their revenue.

3 Vision and Roadmap
Next, we present a high-level overview of our envisioned WebSieve
architecture to instantiate the approach of reducing web page com-
plexity to reduce page load times on mobile devices. Our focus
here is primarily to achieve the right balance between page load
time, user experience, and website providers’ interests. We do not
focus on orthogonal problems in optimizing web pages for mobile
devices such as customizing the page’s layout to suit the screen
size, form factor, and UI capabilities of the devices [17].

The problem statement that lies at the heart of WebSieve is as fol-
lows. Given a budget on load time, our goal is to select a subset of
objects on a web page that will maximize the user experience while
satisfying the load time constraint. To keep the discussion simple,
consider for now that (1) there is only one type of client device, and
(2) that the website’s content does not significantly change over
time; we discuss how to address these issues in practice in Sec-
tion 7. Consider a web page W that has a set of objects O . Each
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Figure 2: Overview of WebSieve architec-
ture.

Figure 3: Quantifying change in objects
across page loads.
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Figure 4: Visualizing our intuition for
mapping objects.

object oi ∈ O takes time ti to fetch from the server and offers
utility Util i to users and website providers. Given a maximum al-
lowed load time of M (e.g., user studies suggest a tolerance around
2–5 seconds [19]), our goal is to select, from all subsets of objects
O ′ ⊆ O whose load time is less than the allowed maximum (i.e.,
≤ M ), the subset that maximizes the total utility

∑
oi∈O′ Util i .

WebSieve can then reduce the user-perceived load time for page
W either by loading only the selected subset of objects or by load-
ing this subset before other objects on the page.

This abstract view of the problem highlights three key design
challenges that we need to address.

• Dependencies: There are natural loading dependencies between
the objects in a web page. For example, many web pages down-
load images as a result of executing Javascripts on the client;
in this case, the script is a natural parent of the resultant im-
age. This means that we cannot select to load an object without
choosing to load its parent as well.
• Utility inference: The notion of utility perceived by users and

providers is a complex issue. For instance, objects in a web page
that are not “visible” may not directly contribute to the user expe-
rience but are indirectly critical to download interesting content.
Moreover, users may differ in their interest and tolerance to web
objects, e.g., some users may hate ads and images but others may
perceive value in these.
• Object selection: The algorithm to select a subset of objects

needs to be very efficient; otherwise the runtime of the algo-
rithm may be better spent loading more objects. A key challenge
here is that predicting the load time when a subset of objects is
fetched is itself non-trivial. In addition to the parent-child rela-
tionships described above, web browsers employ parallelization
techniques to accelerate page loads. For example, a default Fire-
fox desktop installation can maintain up to 16 connections in
parallel and at most 6 connections open to any particular host-
name. Consequently, the time to load a set of objects cannot be
simply modeled as a simple combination of the individual load
times. Furthermore, the load time also depends on the specific
device and operating conditions, e.g., 3G vs. WiFi connection.

Figure 2 depicts how these three components fit into WebSieve’s
architecture, which can be logically partitioned into a frontend and
a backend. For every web page, the backend generates a compact
fingerprint that summarizes the key properties of the page. This
fingerprint includes a) the dependency structure of the web page,
b) load time information for objects on the page, and c) the object
utilities as perceived by the website provider. Since these features
change infrequently, WebSieve’s fingerprint generation can be per-
formed offline. A website provider can host the backend for finger-
print generation of all pages on his site, or this task can be deferred
to any third-party server-side infrastructure. The frontend, which
customizes web pages on the fly, can be implemented either as a
browser extension or in a proxy that supports dynamic page rewrit-
ing and Javascript execution capabilities.

The typical steps involved in fetching and rendering a page with
a WebSieve-enabled client will be as follows. The client requests
the base HTML file for the web page via the frontend. Along with
the HTML file, the frontend also fetches in parallel the fingerprint
for the web page from the backend. By combining this fingerprint
with the utilities expressed by the local user, the frontend deter-
mines which subset of objects on the page it should load. When
the client’s browser issues subsequent requests for the remaining
objects on the page via the frontend, the frontend either sends an
empty response or defers the load for objects that are not in its se-
lected subset.

4 Dependency Extraction
As websites increasingly contain dynamic content loaded by scripts
and customizable widgets, a specific object can be identified and
downloaded only after its logical parents have already been pro-
cessed. Consequently, any attempt at choosing a high-value subset
of objects must account for these logical dependencies. Our goal
is to automatically infer the load dependency graph for any given
web page; manual specification of cross-resource dependencies by
the web page’s developer is impractical since 30% of the objects on
the median web page are fetched from third-party domains [16].

4.1 Strawman solutions
Consider a page W consisting of the set of objects OW = {o1 . . . on}.
Each object oi has a logical dependency on its parent pi . We con-
sider two intuitive solutions to infer this parent-child dependency
structure within a web page. Note that these dependencies cannot
be directly inferred from the document structure of the page, as
some objects may be loaded after executing dynamic scripts.

HTTP Referer: The first option is to rely on HTTP referer tags
to identify the causal relationships between object loads. We can
load the web page once, and then extract the referer tags during this
load to infer parent-child relationships. While this seems intuitively
simple, this is not robust. A dominant fraction of dynamic content
is loaded via Javascript which does not yield useful referer tags.

Structure inference via blocking: The high-level idea here is
to infer potential causal relationships by blocking objects in the
web page, similar to the idea proposed in WebProphet [21]. Sup-
pose that the set of objects on a page do not change across multiple
loads. For each object oi ∈ OW , we can load the webpage when
this object is blocked; we perform these page loads with individ-
ual objects blocked on a server using the Firefox browser (in its
default configuration) with an empty cache. If the page observed
when blocking oi is W−oi , then we know that every object in the
set difference between the object sets OW − OW−oi is a logical
descendant of this blocked object oi . Though this one step may not
be able to distinguish between immediate descendants and indirect
descendants, by repeating this experiment for every object, we can
reconstruct the exact dependency graph between objects.

In practice, however, web pages are not static even within a short
window of time; the set of objects loaded across back-to-back loads



of the same page can be different, e.g., because every refresh yields
a different ad or causes the website provider to return a different
banner image. For example, in our dataset of 2000 websites, Fig-
ure 3 shows that over 10% of objects on the page change across
page refreshes in 40% of sites. In our context, this implies that the
set of objects loaded after blocking oi will not be a strict subset of
the original set of objects OW . Specifically, some object from OW

could be missing from W−oi either because it is a logical descen-
dant of oi or because it was replaced with a different object when
we reloaded the page (see Figure 4). Because of this ambiguity, we
may potentially infer false dependencies (i.e., claim x is a parent of
y, even though they are unrelated) using the above approach.

4.2 Proposed approach
To handle the constant flux in a web page’s content, we propose
the following approach. As before, let OW be the set of objects
in the original webpage and the set of objects seen after blocking
oi be OW−oi . At a high-level, we want to distinguish between the
objects that are genuinely missing (i.e., descendants) vs. objects
that have been replaced.

As a simplifying assumption, we assume that the number of ob-
jects in the web page does not change over the period of time
it takes to infer the page’s dependency structure; our preliminary
measurements confirm that this is indeed the case. Then, we try to
infer a one-to-one mapping between the set of objects in OW−oi −
OW and OW − OW−oi ; note that this cannot be a bijection since
the sizes of the two sets are different. The intuition behind our ap-
proach is that, when we reload the page after blocking oi , some
of the objects in the original web page have been subsequently re-
placed by the content provider. These new objects are the ones in
OW−oi − OW . Our goal then is to match each such object with
a corresponding object in the original web page (i.e., without any
blocking). Once we have this matching, we know the true set of
“missing” objects as the ones that appear in OW − OW−oi but do
not match up with any object in OW−oi −OW . These are the true
descendants of oi .

We infer this correspondence between blocked objects and ob-
jects in the original web page with a two-step approach. The first
step is to find where the object appears in the source files down-
loaded and match with the object that originally appeared in its
place. In our measurements, we observe that this simple mapping
step is able to accurately match over 80% of objects that change
across page loads. Some objects remain unmapped after this step,
for example, because their URLs are generated algorithmically by
an embedded script. To address such cases, we map objects using
object attributes (e.g., file type and file size) with a simple nearest
neighbor like algorithm. With this two-stage approach, we obtain a
comprehensive procedure for mapping objects across page loads.

5 Utility Inference
Next, we focus on inferring the utility of individual objects in a
webpage. First, we consider the user-perceived utility of different
web objects. Ideally, for every object on a web page, we want to run
controlled user studies across a sufficiently large sample of users to
evaluate the expected value that users perceive from that object.

Since it infeasible to do so for every single web object, we ex-
plore the possibility of learning a classifier that can estimate utili-
ties. Though the number of objects on the Web is potentially un-
bounded and growing, the utility of any object will likely depend
on a few important characteristic features of that object. For ex-
ample, some of the candidate features may include attributes such
as the location of the object on the web page (e.g., providers are
likely to place interesting objects on top), the type of object (e.g.,

advertisement vs. image), whether the object has a clickable link,
whether the object is visible on the page or hidden, and so on.

Our goal is to learn a predictive model that takes as input such
object attributes and estimate the potential utility. More formally, if
we have features F1 . . .Fj . . . (e.g., location, type) and we have an
object where the values of the features are 〈F1 = f i1 , f

i
2 . . . f ij . . .〉

(e.g., location=top-left, bottom-right) [25], the prediction model
Util({f ij }) takes as input the values of these features for a par-
ticular object and outputs the object’s utility score.

User study to infer utilities: To gain initial insights into the feasi-
bility of inferring such a predictive model, we ran a user study using
the website http://object-study.appspot.com. On this site, we show every
visitor snapshots of 15 web pages—the landing pages of 15 web-
sites chosen at random from our list of 2000 sites (see Section 2).
For each of these 15 web pages, we pick one object on the page at
random and ask the user: Would removing the ‘Object of Interest’
greatly impact a user’s experience on the website? We ask users to
report the perceived “value” of each object on a Likert scale from
-2 to 2, which correspond to an answer varying from “Strong No"
to “Strong Yes" in response to our question. We collect responses
to this survey from 120 users on Amazon Mechanical Turk.2 An
examination of the responses from our user study shows that sim-
ple heuristics such as categorizing all objects “below the fold" as
low utility do not work; irrespective of where we consider the fold
within the range of 600 to 900 pixels, we find that roughly 35% of
objects below the fold were marked as important.

Need for personalization: We use the responses from our user
study to train several types of classifiers (with five-fold cross val-
idation) such as decision tree, SVM, and linear regression. Each
sample of the training data comprises the features associated with a
particular object as the attributes and a user’s utility for that object
as the value. We associate every object with various features that
capture its size, its type of content, if it is an image, whether it is
part of a sprite, the object’s location on the page, whether it is vis-
ible and if so, whether it is in the foreground or the background of
the web page, and if the object has a link, whether that link points
to third-party content. However, we find that none of these features
are well correlated with the responses in our user study; as a result,
the best prediction accuracy that we were able to obtain is 62%.

Surprised by the low accuracy across all classifiers, we analyzed
the responses. Specifically, we looked at different types of object
features, and for each, we analyzed the user responses within that
specific feature (e.g., button, ad, location). It became immediately
evident that the problem was that we were trying to build a global
model across all users. We observed that there is considerable vari-
ability in user responses within each feature. For instance, 20% of
users felt background images were important while 60% did not,
while only 50% of users thought links on the bottom were impor-
tant. What was striking, however, was that any given user was con-
sistent in her responses. That is, across all websites, a user typically
rates over 80% of objects with a given feature as either important
or unimportant.

Hence, we foresee the need for personalization in WebSieve.
In other words, WebSieve needs to learn and use a classifier cus-
tomized for a specific user. For example, after a user first installs
the WebSieve frontend, the user can mark selected objects on any
web page she visits as low utility (say, whenever the page takes too
long to load); the Adblock browser extension similarly lets users
mark ads that the user wants it to block in the future. Based on

2 As a sanity check, we only pick respondents who pass our valida-
tion stage where we show 4 objects known to be extremely relevant
or irrelevant and filter out users who respond incorrectly.
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Figure 5: Each arrow represents a logical parent-child dependency.
We want to pick a subset of objects respecting the dependencies that
maximizes the utility given a bound on load time.

the user’s responses, we can then learn a classifier over time that is
specific to the user. However, a particular user’s utility of objects
with similar features may vary significantly across different types
of websites. For example, small objects with links are likely to be
important on a shopping website (e.g., the “shopping cart" button)
but not as important on news sites (e.g., the Like and +1 buttons).
Therefore, WebSieve may need to consider different categories of
websites, and even for a specific user, train a different classifier for
each website category. A natural question here is the trade-off be-
tween increased accuracy of inferred utilities and overhead for the
user as we need larger training sets.

Accounting for functional dependencies: If functional depen-
dencies between objects are not accounted for, blocking objects can
potentially break the web page’s functionality and re-ordering ob-
ject loads may not reduce user-perceived page load times even if
high utility objects are loaded upfront. For example, delaying the
load of a CSS object until after other high utility objects may re-
sult in a flash of unstyled content (FOUC) [6]. Similarly, if the
Javascript that has registered an event listener with a button is not
loaded, that button may not be functional. These are dependencies
that our proposed approach in Section 4 will fail to detect. Hence,
we directly account for such functional dependencies by associat-
ing CSS objects and Javascripts that have event listeners (which we
conservatively detect via static analysis of Javascript code) with the
highest utility. Based on our previous measurements [16], we esti-
mate that these objects typically account for a small fraction of the
objects on a web page.

Accounting for provider utilities: In addition to accounting for
user-perceived utilities, it is important to ensure that the interests
of website providers are preserved. Prioritizing only popular/useful
content can hurt business interests of web providers because analyt-
ics or ads may get filtered out. To take this into account, WebSieve
can allow for web providers to specify in any web page’s source
code the objects that are considered important by the provider of
that page. For example, these prioritization hints can be added via
META HTML tags. WebSieve can then take these priorities into ac-
count in combination with its estimates for user-perceived utilities.
Thus, WebSieve can ensure that the interests of web providers are
respected, while minimizing the burden on them for customizing
their web pages for mobile devices.

6 Optimal object selection
We describe the abstract formulation of the object selection prob-
lem to highlight the key parameters involved, discuss practical chal-
lenges, and present our roadmap to address these.

6.1 Problem Formulation
The object selection module in the frontend receives the fingerprint
from the backend which captures the dependency structure (§4) and
annotations to specify key object features (§5). Using these fea-
tures in conjunction with the user’s preferences, it can compute the

expected utility that each object provides. Combining these, it con-
structs a logical representation of the webpage as a tree where each
node in the tree is annotated with its utility, as shown in Figure 5.

Our goal is to select a suitable tree cut in this tree structure; i.e. a
cut that also satisfies the dependency constraints. Formally, we are
given as input the page tree dependency T for a website W and the
time budget M . If C denotes a cut, we want to select the cut C ∗

that, out of all cuts that can be loaded within time M , maximizes
the expected utility.

It is evident that we need a fast algorithm that can solve this
problem because object selection is on the critical path for loading
the webpage. If the optimization itself takes too much time, then it
defeats the purpose of reducing the page load time.

6.2 Practical Challenges
There are two key stumbling blocks. First, the dependencies be-
tween objects make this problem NP-hard.3 Second, any optimiza-
tion framework will need to model the time to load arbitrary sub-
sets of objects. It is difficult enough to model the LoadTime(C )
function even for a specific fixed subset of objects, let alone for
all possible subsets! This challenge arises from browser optimiza-
tions and the use of parallel connections in loading a web page.
In particular, it is challenging to find a closed form function for
LoadTime(C ). For example, some intuitive solutions like using
the sum of the load times or dividing this sum by the expected
number of parallel connections turn out to have very high (≈ 3–4
seconds) estimation errors. Thus, we have a chicken-or-egg prob-
lem here—in order to pick the optimal subset we need to estimate
the load time, but we cannot estimate this before picking a specific
subset. In other words, without explicitly enumerating all possi-
ble subsets and physically loading them, it appears we cannot solve
this optimization.

6.3 Proposed Approach
Dependency Modeling: To address the first problem of depen-
dencies, we propose to use compact integer linear programming
formulations. Let di be a {0, 1} variable that indicates if we have
selected the object oi . Let pi denote the logical parent of the object
oi in the page tree. Then the dependencies become a simple linear
constraint of the form: ∀i : di ≤ dpi .

Load time approximation: We see two practical approaches to
address the load time estimation challenge. The key idea in both
cases is to leverage the load time “waterfall” for the original web
page annotated with the finish time tfi for each object i . This infor-
mation can be included in the web page’s fingerprint.

The first approach is to obtain a conservative load time estimate.
Specifically, given a set of objects O , we can use the maximum
finish time: LoadTime(O) = maxi∈O tfi . This is conservative
because blocking some objects will have scheduled this max-finish-
time object much earlier. Given this context, we can write the page
tree cut as an compact integer linear program (ILP). We do not
show the full formulation due to space constraints. While we are
still solving a NP-hard discrete optimization problem, we can lever-
age efficient solvers such as CPLEX. We find that it takes ≤ 30ms
to solve the optimization with real dependency graphs for pages
with ≈ 100 objects (but with synthetic utilities). Thus, despite the
theoretical intractability, we have reasons to be optimistic.

The second, is to heuristically estimate the load time for a given
subset of objects by using the timeline of object loads. The main
idea is to look for “holes” in the waterfall after blocking and move

3We can formally prove via a reduction from the weighted knap-
sack problem, but do not present the reduction here for brevity.



all objects whose parents have already been loaded to occupy these
holes greedily. While this does not give a closed form equation, it
gives us a practical handle on estimating the load time for a subset,
and we find it works well (< 20% error). With this estimator tool,
we can use greedy “packing” algorithms; iteratively pick the object
with highest utility and select it along with its ancestors as long as
this choice does not violate the time budget.

We can also combine these two approaches to improve the op-
timality. For example, we can first run the ILP and then use the
greedy approach to exploit the residual time left because of the con-
servativeness of the max-estimator. A natural concern is how close
to the optimal solution our conservative ILP and greedy solutions
are. In particular, we need to come up with mechanisms for getting
tight upper bounds on the optimal solution given that the problem
is intractable. We plan to investigate these in future work.

7 Discussion
Website stability: A web page’s fingerprint needs to be regen-
erated as the set of objects on the web page and the structure of
the web page changes. To gauge how often this regeneration of a
web page’s fingerprint will be necessary, we performed a prelimi-
nary study with 500 websites (chosen at random from our dataset
of 2000 websites). We loaded the landing page of each of these
websites once every six hours for a week. Our analysis seems to
indicate that, though we saw previously that a significant fraction
of objects on a web page change across repeated loads, the subset
of stable objects and the dependencies between them appear to per-
sist for several days. Hence, it will likely suffice for WebSieve to
regenerate dependency information once a week. In practice, we
can consider an adaptive scheme based on information provided by
the website provider—refresh information more (less) frequently
for web pages that have more (less) flux in their content.

Extrapolating across clients: Apart from dependency informa-
tion, a web page’s fingerprint also includes object load time infor-
mation. The load times for individual objects however depend on
client device capabilities, e.g., mobile phones vs. tablets or differ-
ent versions of smartphone OS. For example, recent studies show
that page load times significantly vary based on the device’s stor-
age [20]. Since it is impractical to gather load time information
for every web page on every type of client device in every possi-
ble network condition, we need the ability to extrapolate load time
across clients. This algorithm should take two inputs: 1) load time
measurements on a reference device type in a specific network set-
ting, and 2) a characterization of a target device and its network.
Given these inputs, the algorithm should extrapolate measured load
times to the setting of the target device. At the time of loading a
web page, WebSieve’s frontend can then use this algorithm to ap-
propriately tailor load time information included in the web page’s
fingerprint for the local client.

Balancing user-provider utilities: One obvious issue here is the
tension between users and providers; e.g., users may not want ads
but providers do. Note that this problem is not intrinsic to Web-
Sieve and exists today with Adblock-like solutions [5] and track-
ing [23]. While we cannot speculate how this tussle will play out,
our utility maximization framework provides a technical solution
to deal with this tussle more explicitly, in contrast to today’s binary
measures that pick extreme points catering to only one side.

Other applications: While we have focused here on the prob-
lem of reducing web page load times on mobile devices, our ap-
proach also has other applications. For example, blocking low util-
ity objects can reduce the energy consumption associated with web
browsing on mobile devices. Similarly, blocking low utility objects

can help users of mobile devices cope with ISP-imposed caps on
the amount of data they can receive over the network.

8 Conclusions
Our common mode of access to the Web is slowly transitioning
from desktops/laptops connected to wired networks to mobile de-
vices connected with access to wireless networks. While this client-
side revolution is already under way, the ability to cope with this
change is currently restricted to the top websites.

Our overarching vision is to democratize the ability to gener-
ate mobile-friendly websites, enabling even small web providers to
transition to support mobile devices without investing significant
resources to do so. For this, we present the WebSieve architec-
ture, whose design is motivated by the observation that the Web
performance problems on mobile devices stem from the increasing
complexity of websites. To tame this complexity, the WebSieve
architecture takes into account the intrinsic dependency structure
of webpages and user-perceived utilities, and uses these to opti-
mally select a subset of objects to render on mobile devices given
a budget on the load time. While we have highlighted several open
issues that need to be addressed to translate our vision into reality,
our early approaches and results give us reasons to be hopeful.
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ABSTRACT
We explore the use of TV whitespaces based communication sys-
tems for providing robust connectivity to vehicles. We envision
a setup where whitespaces base stations mounted by roadsidethat
communicate with whitespaces gateway nodes placed on vehicles.
A key challenge in this setup is theasymmetry in transmission
power limits – the fixed base station is allowed to communicate
at up to 4W, while the mobile gateways on vehicles are limitedto
100mW. This paper presents a specific network design calledScout
to deal with this asymmetry in which whitespaces transceivers are
used in the downlink direction while a more traditional cellular path
is used in the uplink one. As the key component of this system,we
describe a novel channel probing mechanism that sends a forward
radio to look ahead and identify the best channel parametersto be
used when the rear radio eventually reaches the forward post. We
report various challenges and experience in this design andour on-
going plans to use it for providing Internet access to publiccity
buses. Our initial results indicate a 4× coverage improvement and
1.4× throughput gain achieved byScout.

1. INTRODUCTION
TV whitespaces (512-698MHz), recently released by FCC for

unlicensed usage in the U.S. [6], provides wireless communica-
tion systems with abundant spectrum resource (180MHz) and ex-
cellent propagation characteristics (1.9km). In this workwe intend
to leverage this whitespaces spectrum for providing long-range and
high-speed network connectivity to moving vehicles.

The application we target at is to provide Internet access tothe
commuters of a city metro with about 250 buses. Figure 1 shows
our target deployment, which consists of base stations mounted
along roadside, connected to a proxy server. The base stations
backhaul Internet traffic generated by the whitespaces gateway nodes
(clients) mounted on top of the buses. Each gateway node is con-
nected to a WiFi hotspot inside the bus for providing Internet access
to commuters.

Ideally, we would like to use a whitespaces-only solution. How-
ever, due to various scalability and cost reasons, we instead adopt
an asymmetric network design calledScout which uses whitespaces
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not made or distributed for profit or commercial advantage and that copies
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Figure 1: Traditional (symmetric) Whitespaces Network v.s.
Scout (asymmetric) Whitespaces Network. The symmetric net-
work (left vehicle) uses whitespaces for both uplink and down-
link communications. In contrast, Scout (right vehicle) uses
whitespaces for downlink communications, while using the cel-
lular service for uplink communications. The delay of the cel-
lular feedback path δ ≫ η, the delay of whitespaces downlink.

for downlink communications and the cellular path for uplink com-
munications. In particular, we present two key ideas inScout: (i)
the use of a cellular link to significantly extend the coverage of each
whitespaces base station, (ii) the use of an extra scouting radio to
compensate for the effects of feedback delay over the cellular link
in taking protocol decisions.

1.1 Motivation and design of Scout
One major design goal of this vehicular network is to leverage

the good propagation characteristics of TV whitespaces frequencies
to reduce the deployment and management cost by having a small
number of base stations to cover a large area. Unfortunately, the
asymmetric transmission power limit in TV whitespaces has sig-
nificantly limited the reachability of the base station. According to
the FCC’s recent ruling [6], the mobile client is allowed to transmit
atmuch lower power–100mW 1 compared to the static base station
allowed to–4W. The 40× difference in the power limit is to protect
against the potential interference resulting from the mobile clients
roaming into some unpredictable locations. Thus, a symmetric,
whitespaces-only network solution as proposed in [8] (Figure 1 left
vehicle) would limit the transmission range of the base stations to
that of the “weak” mobile clients when bi-directional communica-
tion applications are commonly supported. Measurements inour
whitespaces testbed have shown 4× reduction in the transmission
range of the base station (1.9km and0.5km for 4W and 100mW
1This maximum power includes the gain of antennas and regardless
of number of channels used for communications.
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respectively) in a symmetric network design. To address this prob-
lem, we designScout which has the following characteristics.
(i) An asymmetric network design for improving the coverage
of base stations: Figure 1 (right vehicle) showsScout, an asym-
metric network architecture to deal with the problem of power asym-
metry. Scout uses different technologies for uplink and downlink
communications. The downlink connection (from the base station
to the bus) is over whitespaces frequencies, while the uplink (from
the bus to the base station) is over cellular. Thus,Scout lever-
ages the ubiquitous cellular connectivity to circumvent the “weak”
whitespaces uplink, in turn enabling each whitespaces basestation
to extend the bi-directional communication range to a maximum.
Furthermore, since the downlink load is reported to be dominant in
many network applications (10× in WiRover [7]),Scout is efficient
in utilizing whitespaces spectrum to transmit the majorityof data.
In our current implementation, we use a WiFi-based whitespaces
hardware in [16] for downlink and 3G for uplink communications.

Unfortunately, the operation of the asymmetric network is plagued
by thehigh feedback latency in the cellular uplink, which is 10–
500× of the packet transmission duration in whitespaces commu-
nications. The problem is exacerbated by vehicle mobility which
causes rapid change of communication environment. Since most
of wireless communication systems rely on channel feedbackfor
making protocol decisions at different layers of the stack,e.g., PHY
data rate, FEC at the MAC layer as well as congestion control,er-
ror recovery at the transport layer, the poor feedback accuracy can
significantly degrade backhaul performance. To tackle the problem
of slow uplink, we present our second technique of using an extra
radio to measure channel condition for a location in advance. This
information is then used for optimizing various transmission deci-
sions for another radio by the time it reaches that specific location.
(ii) A scouting radio for channel estimation: The core intuition
of our work comes from the observation that the location of a vehi-
cle has a profound effect on the channel characteristics experienced
by a radio mounted on the vehicle [11, 12, 14]. For instance, ave-
hicle traveling behind a building is observed to have much worse
reception than driving in line-of-sight to the base station. To lever-
age this channel property, we place a scouting radio at the head
of the vehicle (front radio) as shown in Figure 2. This front ra-
dio passively monitors the downlink traffic at the current location
l. It sends back the observed channel information, e.g., packet loss
rates, to the base station over the cellular link. After timeτ , the
receiving radio placed at the rear of the vehicle (rear radio) reaches
the same locationl. The base station can utilize the channel obser-
vation made atl, τ time ago to adjust its transmission for the rear
radio.

While the proposed scheme is incapable of tracking fast fad-
ing, we will show in Section 2 that channel estimates made by the
scouting radio is still beneficial in estimating different link char-

UHF1

WiFi1

WiFi2 UHF2

(a) Wideband digital radio. (b) The base station.

Figure 3: Experiment setup.

acteristics. This in turn leads to better protocol decisions and ul-
timately improves the overall performance of the vehicularInter-
net access. Furthermore, the idea of adding one scouting radio is
complementary to various diversity combining techniques used in
existing multi-antenna systems, which we will discuss in Section 6.

In this paper, we highlight the efficacy of the scouting radio
based mechanism by showing that it can enhance the performance
of rate adaptation. We emphasize thatwhile the problem of rate
adaptation has been well studied in a traditional, symmetric com-
munication system, it is unique in our asymmetric network with a
feedback link hundred times slower than the forward path.
Comparison with cellular technologies: Finally, we note that cel-
lular technologies (3G, LTE, WiMax, etc.) also successfully ad-
dress the problem of providing long-range network coverageto mo-
bile clients with weak transmission power. Unfortunately,translat-
ing the gains achieved inlicensed bands by the cellular technolo-
gies to operate overopportunistic TV whitespaces appears nontriv-
ial. One of the major challenges is that traditional cellular technolo-
gies require centralized coordination by the base station to tightly
control the transmission power of each mobile station [5, 18] for
managing interference. This allows low power mobile clients to
communicate successfully with cellular base stations. However,
in the whitespace domain the base station would be incapableof
controlling other unlicensed devices potentially using anentirely
different communication protocol. The uncoordinated interference
is likely to overwhelm the weak uplink signal.Scout is robust to
interference by communicating the uplink traffic over the licensed
spectrum.

In contrast to a symmetric cellular solution over the licensed
spectrum,Scout offloads the majority of traffic over TV whites-
paces. The abundant free spectrum leads to better performance and
lower spectrum cost if a pre-paid cellular billing option isavailable.

1.2 Contributions
Our contribution in this work is two-fold. First, we presentan

asymmetric network architecture–Scout which efficiently uses TV
whitespaces for providing wide-area network connectivityto vehi-
cles. Second, as a key component inScout, we propose a novel
channel probing framework to address the problem of feedback de-
lay, enabling our system to extract most benefits out of TV whites-
paces. Based on our trace driven simulation,Scout can extend the
coverage of the base station by 4× and achieve a median through-
put improvement of 1.4×.

2. FEASIBILITY OF SCOUT
In this section, we validate the feasibility ofScout. We begin by

explaining our experiment setup.

2.1 Experiment setup



Radio platform: Figure 3(a) shows our radio platform, called the
Wide Band Digital Radio (WDR). It performs a frequency trans-
lation function similar to the KNOWS platform [1]. With two in-
dependent signal processing paths, the WDR can simultaneously
translate two signals between the UHF band and the ISM band.
This enables us to use a single WDR radio to process signals re-
ceived from both antennas at the client. The converted signals are
fed to WiFi cards for the baseband processing. Due to some hard-
ware limitations, the current version of WDR can support 802.11
b/g data rates up to18Mbps.
Testbed: Our testbed currently includes a base station and a mo-
bile client. The base station consists of a host machine, a WDR
radio, a high-gain power amplifier and a directional TV antenna,
as shown in Figure 3(b). The total transmission power at the base
station is3.8W. For the mobile client, we use a vehicle carrying
one WDR radio and two omni-directional antennas. The downlink
communications are configured at a center frequency of 662MHz
with a bandwidth of 20MHz according to a spectrum occupancy
database [19].
Metrics: We measure the loss rate calculated for every 10 contigu-
ous packets at the same fixed data rate. We use it as an indicator of
channel quality for a given location and at a given time. We then
calculate the magnitude of difference in loss rates under different
time separations to classify whether channel condition haschanged
with varying location or time (or both). We denote this time sepa-
ration as alag in the following discussion.

2.2 Validation of intuition
The feasibility ofScout can be ascertained by comparing the fol-

lowing two approaches, which are shown in Figure 2. InScout,
suppose the front radio measures the loss property at location l,
time t. How accurate is this measurement in predicting the channel
condition for the rear radio when it reaches the same location l at
time t + τ? We contrast this with the other alternative of a single
radio (Single). In the single radio scenario, the only radio will esti-
mate the loss property at locationl at timet, and use this estimate
to predict its performance at locationl +∆l at timet+ δ.

To understand the stability of channel loss properties as only a
function of time, we present the variation of loss rates for the same
locations with different lags. We measure this by placing a sin-
gle radio mounted atop a car at 12 equally spaced locations ona
200m road stretch. Figure 4 (Single static) shows that loss varia-
tion remains small with a lag below300msec for all the measured
locations.

We next determine the stability of loss measurements done by
the same single radio as a function of both time and location.The
speed of the vehicle is between 5m/s (18 km/hr) and 10m/s (35
km/hr), which is typical for urban area due to the 40km/hr speed
limit. As can be seen from Figure 4 (Single 10m/s and 5m/s), the
difference in loss rates increases drastically with increasing lags.
The degree of variation is expected as the single radio system is
measuring the loss rates at different locations and different time.
When using the stale channel observation to predict the lossrate,
Single would make an estimation error of over 30% under the delay
of 100–150msec in a 3G uplink.

We finally benchmark the mismatch in the loss rates underScout
setup with two radios (front and back)at the same location with
different lags. The result is again shown in Figure 4 (Scout variable
speed). We note that the difference in loss rates between two radios
at the same location with a lag of300msec remains a fifth of a
single radio traveling at 10m/s speed. This demonstrates that Scout
can indeed improve the channel estimation at a given location.

Based on this maximum lag, we choose the antenna spacingλ to
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Figure 4: Average of absolute loss difference at various lags
for 12Mbps packets. The lag is the elapsed time between two
measurements. Single denotes one radio and Scout is the two
radio setup.

be 1.5m and the driving speed 5–10m/s. This ensures that the high-
estτ 300msec (1.5m/5m/s) to be within this maximum threshold,
and the lowestτ 150msec (1.5m/10m/s) to be greater than the
typical cellular delayδ (100msec).

Finally, we note that adopting 4G LTE as the feedback link would
introduce much lower latency (10–25ms). However, Figure 4 shows
that it still leads to 15% - 20% estimation error whichScout can
avoid. This justifies the effectiveness ofScout along the advance-
ment of the cellular technology.

3. DESIGN OF SCOUT
In Scout we use a single radio at the base station for downlink

transmission. At the client, we use the rear radio for packetre-
ception, while leveraging the front radio to passively monitor the
downlink traffic for channel estimation. The packet acknowledg-
ments generated by both radios are sent over the cellular link to the
base station.

To select a data rate for the rear radio at a given locationl, we use
the feedback previously generated by the front radio atl, combined
with the feedback from the rear radio currently available atthe base
station. We use a GPS device at the client to relate a feedbackfrom
the front radio to the monitored location. The GPS device reports
its reading once every second over the cellular uplink to thebase
station. We present the pseudo-code ofScout in Algorithm 3 and
give a detailed explanation next.
Combining feedback from dual radios: In our deployment we
observe mismatched reception performance between two radios when
their antennas are mounted at different locations on top of the vehi-
cle, e.g., different orientation and tilting. This difference is usually
small enough for the two radios to experience a common channel
trend. However, we find that selecting data rates solely based on the
feedback from the front radio leads to sub-optimum performance.

In Scout we utilize the front radio to detect channel variation,
while using the rear radio to identify a set of rate candidates to se-
lect from. Specifically, we use one of the existing algorithms, e.g.,
SampleRate, to select a preliminary data rate based on the stale
feedback from the rear radio. This is shown in Line 1 of Algo-
rithm 3. This rate is expected to work reasonably well under stable
channel condition. Once we detect the change of channel condition
at the front radio, we use the detected channel trend and the set of
candidate rates successfully received by the rear radio to derive a
more appropriate rate decision.
Relating feedback to the observed location: The accuracy of as-
sociating the feedback to its monitored location significantly affects



Algorithm 3.1: SCOUT(t, λ, v, w,F ,R)

INPUT t: Current time,λ: Antenna spacing.
v: Vehicle speed,w: Window size.
F : Set of ACKs from the front antenna.
R: Set of successful rates from the rear antenna.
OUTPUT rate: Selected rate.
τ = λ/v
rate← set_origin_rate(R) (1)
Wcur ← {fj : fj ∈ F , |j − (t − τ)| <= w/2} (2)
Wprev ← {fj : fj ∈ F , |j − (t − τ − w)| <= w/2} (3)
var_detected← detect_variation(Wcur ,Wprev)
if var_detected < 0

then rate ← set_lower_successful_rate(rateprev,R) (4)
else if var_detected > 0
then rate ← set_higher_successful_rate(rateprev,R) (5)

return (rate)

the performance ofScout. For example, Figure 4 shows that a loca-
tion error of 3m (corresponding to 300ms lag at 10m/s speed) can
lead to 40% off in loss estimation. Unfortunately, our low priced
GPS modules have a positioning inaccuracy on the order of 10m.

To circumvent this problem, we use the speed readingv reported
by the GPS instead of the geo-location reading since it has a much
higher accuracy–0.1m/s. We calculate the radio alignment period
τ , which is the time elapsed for the rear radio to reach the same
locationl since the front radio was previously atl (Figure 2). We
calculate this period with the formulaτ = λ/v whereλ is the fixed
antenna separation. Note thatv remains constant in our calculation
considering the short GPS updating interval (1second). We then
retrieve a window of ACK packetsWcur generated by the front
radioτ time ago, which is the desired feedback observed at location
l (Line 2 in Alg. 3). Sinceτ is small (< 300msec), the positioning
inaccuracy ofScout is below3cm (0.1m/s × 300msec).
Detecting channel variation: To this purpose, we analyze the er-
ror performance between the feedbackWcur generated by the front
radio at locationl, and another window of ACKsWprev generated
prior to Wcur (Line 3 in Alg. 3). We compare the packet loss of
each common data rate between these two windows of packets. If
the loss rate of a given data rate inWcur increases (decreases) by
at leastα (β) fold overWprev, we conclude that the error perfor-
mance of that data rate has changed. We use a voting mechanism
to combine results for all the data rates to determine the trend of
channel variation. We empirically setα andβ at a large value–
0.5 to preventScout from reacting to random channel fluctuation.
We configure the time duration ofWcur andWprev to be 25ms to
collect sufficient, yet relevant feedback.
Adjusting data rates in response to channel variation: Based on
the detected trend of channel variation, we select the next higher
or lower data rate to the previous rate decision, but only from a set
of candidate rates recently succeeding at the rear radio (Line 4-5 of
Alg. 3). By doing so, we can choose a rate not only suitable for
the current channel condition but also consistent with the reception
performance of the rear radio.

4. IMPLEMENTATION
We implementScout at a 3.5 layer on top of the cellular and

whitespaces links as shown in Figure 6. To provide a single link
abstraction, we leverage a virtual network device in Linux called
TUN, and have the base station and the client exchange application
data through it. We create a user-space program passing packets
betweenTUN and one of the underlying network interfaces, i.e.,
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Figure 6: Implementation of Scout with TUN devices.

cellular and whitespaces. For downlink communications, the pro-
gram running at the base station reads the application data from
TUN, sending them through the whitespaces interface (ath0). At
the client, the program delivers downlink packets receivedby the
rear whitespaces radio (ath1), and sends them viaTUN to the ap-
plication. This client program also generates ACKs for the packets
received by both whitespaces radios (ath0 and ath1), sending them
with the GPS readings to the base station over the cellular link.

We configure the whitespaces radio at the base station to operate
in the WiFi broadcast mode. This prevents any client radio from
generating MAC layer ACK over the whitespaces, while having
both client radios to receive the downlink packets forScout. We
enable the base station to control the broadcast data rate byap-
pending a control header in each downlink packet, and modifythe
Ath5k driver to accept this control information.

We implement the user-space program in 4500 lines of C++ and
add about 20 lines of C code in the Ath5k driver.

5. EVALUATION
We evaluate the performance ofScout after integrating it with

two popular rate adaptation algorithms, SampleRate [4] andRRAA [21].
We denote the enhanced algorithms as Scout-Sample and Scout-
RRAA. We have found thatScout achieves median throughput im-
provement of 38% and 39% over SampleRate and RRAA.
Methodology: We use trace-driven emulation as a preliminary eval-
uation ofScout, with real trace captured in TV whitespaces. For
trace collection, we use a similar approach as in AccuRate [15] by
instructing the base station to transmit short back-to-back packets
(200 byte), using 8 802.11 b/g data rates up to 18Mbps alterna-
tively. We then use two radios at the client to capture packettraces
from 10 drives along a 1.5km bus route. The distance between
the base station and the client is about 200–750m, and the vehicle
speed is about 18 – 35 km/hr, which is typical for our city metro.
We choose the antenna spacing to be1.5m as described in Sec-
tion 2. We term each set of 8 contiguous packets at all different
rates as apacket train.

For our emulation, we make each algorithm select one data rate
in each packet train. If the chosen rate belongs to one of the suc-
cessful rates in the current train, we conclude that this rate succeeds
in the duration of this train and vice versa. We then calculate the
throughput of different algorithms based on these results.To emu-
late the feedback delay (typically 100ms in our testbed), weprovide
each algorithm with feedback generated by both radios 100msago
at the client for rate selection.

We empirically adjust the sampling interval of SampleRate from
10 packets to once every train (8 packets). We further set thesize
of estimation window for both algorithms to be 10 trains, which is
found to perform best in our emulation.
Throughput: We calculate the throughput of different algorithms
in each 50m road segment to evaluate performance improvement
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Figure 5: Experiment results. (a) CDF of throughput improvement of Scout-RRAA and Scout-Sample over RRAA and SampleRate.
(b) CDF of timing errors in detecting channel variation. (c) A snapshot for rate decisions made by different algorithms.

of Scout under different road conditions2. The average through-
put from 10 drives is 5.5Mbps and 5.2Mbps for Scout-Sample and
Scout-RRAA respectively. Figure 5[a] shows the CDF of through-
put improvement achieved by Scout-Sample and Scout-RRAA over
SampleRate and RRAA. We observe a median throughput gain of
38% and 39%, and an upper quartile gain of 57% and 48%. We
expect more improvement when higher data rates are available.
Timeliness in adapting to channel variation: To this purpose, we
benchmark the time offset of different algorithms to an optimum
algorithm in adapting to channel variation. The optimum algo-
rithm selects the highest successful data rate in each train. Specif-
ically, we record the time of data rate changes made by different
algorithms, and measure the absolute time difference for each rate
change between algorithms under study to the optimum algorithm.
We denote each time difference as a timing error. Figure 5[b]shows
the CDF of timing errors of different algorithms. We observe31%
and 21% of the case when Scout-RRAA and Scout-Sample have
detected channel variation at the exact time. In contrast, RRAA and
SampleRate have only detected 4% of channel variation in a timely
fashion. Thus, Scout-RRAA and Scout-Sample have achieved a
8× and 5× improvement in detection accuracy. We further report
that the twoScout algorithms incur 5% more false positives than
their original counterpart for detecting channel variation.
Snapshot of different algorithms in operation: We finally present
a snapshot of rate decisions made by different algorithms inFig-
ure 5[c]. First, we can observe a similar trend of channel condition
observed by the two radios at the same location, when referring to
ACKs previously generated by the front radio (Front ACKs) and the
data rates selected by the optimum algorithm for the rear radio (Op-
timum). Second, Scout-RRAA accurately detects the channelvari-
ation, and adapts to a lower rate at the same time as the optimum
algorithm does. In contrast, RRAA selects a lower rate at a much
later time of 23 trains (about 115ms) due to the feedback delay.
Finally, Scout-RRAA directly selects 11Mbps rate based on those
candidate rates successfully received at the rear radio, rather than
choosing the ineffective sequential rate–12Mbps as RRAA does.

6. DISCUSSION AND FUTURE WORK
Improving channel estimation: In Scout the front radio at each
mobile client monitors the downlink traffic broadcasted toall the
clients for channel estimation. We expect this downlink traffic to be
highly available when the number of clients served by a base station
2The reason for choosing the road segment to be 50m is to ensure
that at least 5s trace is available for calculating each throughput
sample.

is high. As a performance enhancement, we intend to develop a
mechanism for the base station to periodically send probe traffic
upon detecting the downlink to be idle. Furthermore, we planto
investigate more sophisticated indicators, e.g., channelresponse for
detecting channel variation.
Fully leveraging the dual radios: TheScout design currently uses
one extra radio (front) solely for channel estimation. In our fu-
ture work we intend to investigate different schemes in combining
signals received by both radios to improve reception diversity, e.g.,
via maximum ratio combining [20] at the PHY layer or packet level
combining [9] at the MAC layer.
Scouting at different layers: We intend to generalize the appli-
cation of Scout feedback to enhance the performance of all lay-
ers of the network stack. For instance, at the MAC layer we can
potentially apply forward error correction codes (FEC) andproac-
tively duplicate downlink packets based on this feedback informa-
tion. Similarly, at the transport layer we will leverageScout to
detect connection “blackout”, and predicatively offload the traffic
over the cellular link to prevent the slow start of TCP.

7. RELATED WORK
We divide the related work into five categories, i.e., whitespaces

networking, vehicular networking, multi-antenna systems, channel
estimation and rate adaptation.
Whitespaces networking: A few research efforts [1, 10] have ex-
plored designing networks over TV whitespaces. WhiteFi [1], as
the first whitespaces network, uses a symmetric network design
with a WiFi-like protocol. SenseLess [10] is a network design that
purely relies on a spectrum occupancy database to determineavail-
able channels. Built on these two pieces of work,Scout addresses
the challenge of extending the coverage of a vehicular network,
constrained by the unbalanced transmit power limit in a given free
channel. In contrast to WhiteFi,Scout uses an asymmetric archi-
tecture consisting of one whitespaces link and one cellularlink.
Vehicular networking: A large body of prior work [2,3,7,11,13]
has been done for providing Internet connectivity into vehicles.
The existing approaches can be categorized into cellular based so-
lutions (MAR [13], WiRover [7]), WiFi based solutions (ViFi[3],
MobiSteer [11]) or a combination of both (Wiffler [2]). In con-
trast to all these approaches,Scout explores a whitespaces based
backhauling solution backed up by a cellular uplink. It achieves
long-range and high-speed network connectivity by harvesting both
the long propagation range (1.9km) and the abundant spectrum re-
source (180MHz) in TV whitespaces.
Multi-antenna systems: The design of multi-radio, multi-antenna



systems [9, 17, 20] have been well studied in the past work. These
MIMO systems harness the path diversity in wireless channelfor
robust reception [9, 20], scaling throughput [20], or simultaneous
communications with multiple users [17].Scout is different from
all these MIMO techniques by using an extra radio system for chan-
nel estimation. More significantly,Scout is complementary to all
these techniques.
Location-based channel estimation: Scout leverages a location
dependent channel property, which has been reported in the prior
work [11, 12, 14]. Bartendr [14] and BreadCrumbs [12] use the
location of the mobile client to predict network connectivity in cel-
lular networks and WiFi respectively. MobiSteer [11] uses the lo-
cation of a vehicle to select the best AP and the directional beam
to serve the vehicle. All the above approaches require a training
database which is updated on a coarse timescale, e.g., orderof
days [14]. In contrast,Scout can obtain “fresh" channel informa-
tion collected shortly ago (150–300ms), achieving higher accuracy
without any training overhead.
Rate adaptation: We integrateScout with two popular rate adap-
tation algorithms, i.e., SampleRate [4] and RRAA [21], to demon-
strate its efficiency. SampleRate periodically picks a random rate to
probe the channel, and selects the rate with the highest throughput.
RRAA tracks the packet loss in a short time duration, and usesthe
predetermined loss threshold to adapt rate. To be effective, both
require timely feedback, which is hampered by the cellular delay,
yet is benefited by the scouting radio.

8. CONCLUSIONS
In this work we explore an asymmetric network design called

Scout for providing wide-area vehicular network connectivity over
TV whitespaces. The proposed architecture circumvents thebot-
tleneck of the whitespaces uplink with the cellular technology, and
significantly extends the transmission range of the base stations.
To deal with the feedback delay in the cellular uplink, we have de-
signed a novel channel estimation framework that uses one scout-
ing radio to measure the channel condition at a location before-
hand. It provides the base station with this more accurate channel
information to select transmission parameters for the receiving ra-
dio. Based on our trace-driven simulation,Scout leads to 4× im-
provement in network coverage and 1.4× improvement in down-
link throughput.
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ABSTRACT 

In this paper, we propose a Social Vehicle Navigation system that 

integrates driver-provided information into a vehicle navigation 

system in order to calculate personalized routing. Our approach 

allows drivers registered into certain vehicle social network 

groups to share driving experiences with other drivers using voice 

tweets. These tweets are automatically aggregated into tweet 

digests for each social group based on location and destination. 

While listening to the tweet digests, a driver can instruct the social 

navigator to avoid or choose certain road segments in order to 

calculate a personalized route. We present our initial design along 

with a simple prototype implemented for the Android platform.  

Categories and Subject Descriptors 

H.4.m [Information Systems Applications]: Miscellaneous; K.4.m 

[Computers and Society]: Miscellaneous 

General Terms 

Design, Human Factors 

Keywords 

Social networks, vehicular networks, navigation systems, human-

computer interaction. 

 

1. INTRODUCTION 
With the ever-expanding affordability of cars throughout the 

world, traffic congestion is a severe problem which can have a 

negative impact on the economy, human health and safety, 

environment, and human productivity. According to a recent 

study, TomTom published its 2012 1st-quarter congestion index, 

using six trillion data measurements of real-time data from 

vehicles. They calculated that Los Angeles drivers spent 33% 

more commute time when traffic was freely flowing and 77% 

more time during rush hours [1]. Thus, traffic congestion is a root 

cause of significant productivity loss, has an adverse effect on an 

individual’s human well-being and energy, and causes vast 

economic loss.  

 

There are a myriad of ongoing attempts to alleviate traffic jams, 

by using on-ramp flow meters, determining real-time traffic flow 

using cameras, better radio traffic reporting, improving the road 

infrastructure, using electronic informational displays along the 

roadway, etc. In addition, the navigation system manufacturers are 

integrating traffic-related specialized functions into on-board 

vehicle navigation systems. In-vehicle navigation systems are 

predicted to quadruple in North America by 2019, growing to 

about 13 million [2]. Apart from the traditional navigation 

manufacturers, such as TomTom or Garmin, drivers are moving to 

less expensive smartphone navigation apps, such as Google Maps 

and Apple Maps [3]. Vehicles equipped with these types of 

devices are expected to be an integral part of the Internet in the 

near future [4]. 

Today, most navigation systems and traffic apps can calculate the 

best route taking into account real-time traffic flow data, as well 

as historic data to predict traffic flow. For example, Google Maps 

calculates the current traffic condition using both real-time data 

from anonymous GPS-enabled device users and historic traffic 

data to provide optimal routes. Despite this, users may still not 

have the choice of the route should they have had access to more 

information, such as the road condition, or the actual reason and 

status causing the traffic jams. In many cases, such information 

cannot be determined automatically, while such information can 

be provided by other drivers driving ahead. For instance, with the 

information that an accident on a certain road is almost cleared, a 

driver can choose to stay on that road, even if current traffic is 

slow, as opposed to another instance where the cause of a traffic 

jam is a long term lane closure. Just knowing what is happening 

on the road ahead in a timely fashion can often alleviate stress and 

significantly improve the driving experience. In the future, driving 

autonomous or semi-autonomous cars [5,6] will likely make such 

information exchange among drivers even more desirable and safe 

at the same time. 

In this paper, we propose social navigation, which integrates 

driver-provided information into a vehicle navigation system to 

calculate personalized routes. Our approach allows drivers to 

share driving experiences with other drivers using voice tweets. 

These tweets are automatically aggregated into tweet digests for 

each social group based on location and destination. Finally, while 

listening to the tweet digests, the driver can instruct the social 

navigator to avoid or choose certain road segments when 

calculating the route. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 
ACM HotMobile'13, February 26-27, 2013, Jekyll Island, Georgia, USA. 

Copyright 2013 ACM 978-1-4503-1421-3 ...$10.00. 



The outline of the paper is as follows: Section 2 provides an 

overview of Vehicular Social Networks. In Section 3, we motivate 

the reader with a sample scenario of integrating information 

provided by other drivers. In Section 4, we present our Social 

Vehicle Navigation design. In Section 5, we describe our 

implementation for the Android platform and in Section 6 we 

discuss related work. Finally, Section 7 and 8 concludes with a 

discussion and plan for future work. 

2. BACKGROUND 
Ever since the invention of the first automobile, the power of 

mobility has improved the frequency at which people meet to 

maintain social relations over even greater distances. In the past, 

the automobile has been an effective tool for socialization. 

However, today, as social networks have become an essential part 

of our lives, people who have a common interest can easily form 

virtual social relations, without having to drive to meet one 

another. Social networks such as Facebook and Twitter have 

redesigned how people socially connect with their family and 

friends with no restrictions to frequency and location. 

Nevertheless, trends to integrate vehicle and social networking are 

in development and have garnered increasing attention in recent 

years [4,8]. 

Traditional social networking services allow people who share 

interests to form virtual social communities. Mobile Social 

Networks [8], on the other hand, take into account the physical 

location and temporal connectivity. In [7], we proposed to 

integrate vehicular networks with social networking, calling the 

result Vehicular Social Networks (VSN). In VSN, users can 

opportunistically form periodic virtual communities based on their 

interest and commuting patterns.  

This paper discusses the integration of vehicular social networks 

into navigation systems taking into account the shared driving 

experiences and driver preferences. VSNs allow drivers to form 

social groups based on their daily commute patterns. Drivers use 

these ad hoc social groups to post voice tweets whenever they 

experience unusual road conditions. The collected voice tweets 

are then converted into digests and are provided to other users in 

the same VSN group. Based on this shared information, the driver 

can input a route preference into their navigation system.  

3. MODEL 
Consider the example of a road layout as shown in Figure 1: 

John commutes to work every day. He has the choice of Route 22 

or Route 66 towards his destination. John would like to consider 

safety first when choosing a route, but unfortunately existing 

navigators do not provide such information. So, John switches to a 

social navigator, which allows him to benefit from the safety 

recommendations provided by other drivers. John’s social 

navigator joins two VSN groups, one defined for the route 66 and 

the other one for route 22.  

Lucy, driving on route 66 is experiencing busy traffic due to an 

accident ahead of her and she shares this information by posting a 

voice tweet (T1). Around the same time, Sam posts a voice tweet 

(T2) mentioning that the bridge on route 22 is slippery but luckily, 

there is not much traffic. Other drivers in the VSN group have 

already posted tweets (T3-T6) about the traffic accident prior to 

Lucy’s tweet. The server realizes that T2-T6 are tweets on the 

same traffic accident, so it discards the older tweets meanwhile 

retaining T2, the latest one. The server aggregates T1 and T2 into 

tweet digests and sends them to every driver in the group. When 

the tweet digests are played back, John knows about the 

conditions on both Route 66 and Route 22. John decides to take 

route 66 even though the traffic is slow. John makes the decision 

despite route 22 not having much traffic because he prefers a safe, 

albeit slow traffic. John tells his social navigator “avoid” after 

listening to the tweet T2, and “choose” after listening to the tweet 

T1. Based on these preferences, the social vehicle navigation 

system recalculates the route for John. Had John’s navigation 

system computed the route simply based on real-time traffic data, 

he would likely have taken route 22.  

Such real-time information sharing service can be made possible 

using vehicular social network (VSN). Users can join VSN groups 

that are of interest, and can either post or listen to other users’ 

real-time voice tweets about the traffic. Then, based on the user’s 

perception of the traffic situation, the social navigator can avoid 

or choose certain routes. To demonstrate its feasibility, we present 

the design and mechanism of NaviTweet, a social vehicle 

navigator that allows drivers to join a VSN group, post or listen to 

traffic related voice tweets and consequently include the driver's 

preference into the navigator's route calculation. 

 

Figure 1 Example Scenario 

 

4. NaviTweet SOCIAL NAVIGATOR  
A typical workflow of the navigator is depicted in Figure 2. 

 

Figure 2. The interaction among the driver, the social 

navigator and the server  



The following steps are performed as part of the workflow: 

1. The social navigator automatically logs the driver into the 

previously registered VSN groups, based on location or 

destination. 

2. The driver records a voice tweet anytime they experience a 

situation potentially relevant to other drivers. 

3. The social navigator tags the voice tweets with the vehicle’s 

location, speed, current time, and driver id, and sends it to 

the server.  

4. The server clusters voice tweets with similar locations and 

times into events. 

5. The server posts events to the relevant social groups.  

6. The server periodically generates a tweet digest for each 

social group out of the most recent voice tweets of each 

cluster. 

7. The navigator receives the tweet digests for the social groups 

the driver is logged into. 

8. The navigator further prunes the voice tweets based on their 

relevance using criteria such as the vehicle’s current location, 

trajectory and driver’s preference for certain group members, 

then plays them to the driver in the increasing order of 

distance.  

9. After each voice tweet is played, the driver can instruct the 

social navigator to avoid, choose or ignore it. 

10. The social navigator uses this information to automatically 

calculate a personalized route for the driver. 

Each step will be detailed in the following subsections.  

4.1 Register and join VSN groups 
A vehicular social network (VSN) is a social network of drivers 

who travel the same set of roadways or have the same destination. 

NaviTweet uses VSN groups for sharing similar driving 

experiences. In NaviTweet, we extend the semantics of VSN 

group definition as follows: 

1. Destination group. For example, group for Manhattan, or 

group for JFK airport. is characterized by (i) group name, 

(ii) center location, (iii) and radius.  

2. Road segment group. Drivers who travel on a major road 

segment should register the group profiled by the road 

segment. i.e. group for NJ turnpike from exit 9 – exit 12 

southbound, or group for Verrazano-Narrows Bridge 

eastbound. Road segment group is characterized by (i) group 

name, (ii) road name, (iii) start intersection, (iv) and end 

intersection 

NaviTweet allows drivers to create VSN groups and manage their 

memberships through a web portal. We assume that drivers are 

interested only in the tweets of the VSN groups they have joined. 

There can be many policies for joining groups. In this work, 

NaviTweet automatically joins a user to all the VSN groups for 

which they are registered. Therefore, only those voice tweets will 

be visible to the NaviTweet client. Further clustering, pruning and 

sorting on these voice tweets are explained in the following 

sections. Policies on how to join VSN groups is an interesting 

issue that we plan to study in the near future. 

4.2 Post voice tweet  
In our implementation, a voice tweet is limited to 15 seconds. 

When recorded, a voice tweet is automatically tagged with 

location, time, speed and driver id. In the current implementation, 

the driver must touch the screen to begin and end a voice tweet, 

although a voice-driven interface can also be used. 

A voice tweet is posted to the server immediately through a 

wireless network as soon as the driver finishes recording. Figure 3 

shows a typical scenario when many users post voice tweets and 

download tweet digests every few minutes. 

By default, the system expects the tweet to be recorded as close as 

possible to the event it is referring to in order to allow automatic 

location tagging. When this is not possible (the driver is busy 

listening to music, on a call, talking to another passenger, etc.), 

the location must be explicitly provided. This can be achieved 

using voice recognition technology or other dedicated user 

interfaces conducive to drivers.  

 

 

Figure 3. Post voice tweets and receive tweet digests. TD 

abbreviates for tweet digest. TD22 is the tweet digest on Route 

22, and contains voice tweet T2. TD66 contains voice tweets 

T1 and T4. John has automatically joined groups for Route 22 

and Route 66, so he will receive TD22 and TD66. 

 

4.3 Prepare tweet digest 
The NaviTweet server periodically prepares a tweet digest for 

each VSN group. A tweet digest contains selected voice tweets 

that are recorded near a destination or on a road segment. For 

example, in Figure 3, the tweet digest for group 66 only contains 

selected voice tweets that are published on route 66. 

When there is a notable event on the road, multiple users will tend 

to record voice tweets on that event. This provides a potential 

opportunity for the server to identify those events by clustering 

the voice tweets within a short period of time by location. The 

idea is illustrated in Figure 4. The NaviTweet server clusters all 

the voice tweets on each road using DBSCAN in a two-

dimensional space, i.e., distance and time, to identify possible 

traffic events that triggers the tweeting. In our prototype, we set 

the minimum tweets per cluster to two to filter out noise and 

unnoteworthy events. Another important property of traffic events 

is that they are transient. As the situation evolves, the older voice 

tweets reflecting past stages of the event will get invalidated. The 

latest state of the event is likely to be the most relevant one for the 

drivers. Therefore, NaviTweet packages the voice tweets with the 

most updated timestamp in each cluster into the corresponding 

tweet digest for the group. For example, in Figure 4, T1, T4, and 

T8 are the latest voice tweets for respective events and form tweet 

digest 66, because they are all on route 66. A NaviTweet client 

receives the tweet digest but only plays the voice tweets that are 

on the user’s possible routes to the destination. Therefore in 



Figure 4, John plays T1, T4 and T8, whereas the other driver only 

plays T4 and T8. We will further explain the generation of tweet 

digests on NaviTweet clients in section 4.4. On the other hand, a 

noise tweet, which is a singular tweet that has no neighbor, will 

never be selected into a digest. 

After clustering, selected voice tweets are assigned to the 

corresponding groups based on their location. NaviTweet server 

maintains all tweet digests in a hashtable using groupid as the key 

and the set of voice tweets as the value. NaviTweet server updates 

the tweet digests every five minutes. 

 

Figure 4. Cluster voice tweets referring to the same traffic 

event by location and time. T1, T4 and T8 form the tweet 

digest for the group 66, because they are all located on Route 

66. NaviTweet client further prunes the voice tweets in the 

digests and plays only the relevant voice tweets. The pruning 

process is explained in section 4.4. 

 

4.4 Play tweet digest  

NaviTweet client periodically downloads all tweet digests for the 

groups the user has automatically joined. The NaviTweet client 

combines the voice tweets in all digests into a temporary set by 

excluding duplicate tweets, and matching the set with all possible 

routes to discard the tweets that do not reside on any of the 

alternative paths to the destination. After this pruning pass, there 

will be fewer tweets left in the final candidate set. 

The calculation of alternative routes is performed using A* search 

algorithm. Whenever we expand the possible route segment set 

into an open list, we check if the new segment contains any voice 

tweets. If so, we attach that segment to the voice tweet meta-data. 

In the end, NaviTweet client sorts the final candidate set in 

increasing order of a tweet’s distance from the current location 

and selects the top N voice tweets (four in our implementation), 

which form the local digest that is played. 

When playing the local digest to the user, it is important to 

minimize the cognitive load on the driver. Because drivers are 

more interested in real-time data, we sort the voice tweets in the 

local digest in the increasing order of distance to the user’s current 

location. We believe it is easier for drivers to process and 

understand the information in this manner. 

Having generated the local digest to be played, NaviTweet client 

will download the voice tweet audio data from the server and will 

play each tweet of the digest in that order. The local digest is 

played in the following format. 

 

t1: <road name, audio content>; 

t2: <road name, audio content>; 

…… 

tn: <road name, audio content>; 

 

We affix the road name to the voice tweet. In this way, users can 

figure out which road each voice tweet relates to. We assume 

users are familiar with the roads they registered for in the VSN. 

A new digest is generated and played to the user automatically 

every few minutes unless she has stopped the navigator. The 

driver can set the time interval based on how close they want to 

watch the road events. 

4.5 Select and calculate route 
As mentioned in Section 3, the criteria for a good route can vary 

for different drivers on different trips. Therefore, it is crucial to 

integrate some extent of personalization to the routing engine. 

NaviTweet client allows a driver to instruct the navigator which 

road segments to avoid or choose based on what they have heard 

in the local digest. 

After a digest is played, the user will be prompted to compose a 

decision in the form of “avoid route 1 and 3; choose route 4”. 

Here, route i refers to the road segment in the ith voice tweet. 

When a user says “avoid route i”, road segment i will be penalized 

by the routing engine, and thus, becomes highly unlikely to be 

included in the final route. Contrary to this, when a user says 

“choose route i”, then the NaviTweet client will select the 

destination via road segment i. 

Safety is one of the most important design aspects, so we use 

speech-to-text recognition for inputting driver’s decisions. When a 

user’s command is recognized as irregular input or a user does not 

provide feedback, NaviTweet client simply ignores the input. 

A digest is played and the user decision is considered at the 

beginning of each interval. There is a slight difference between 

the first run and later runs. For the first run, after the user’s 

decision is provided, a new route is calculated and rendered; 

whereas for the later runs, rerouting and re-rendering only applies 

when the user tries to avoid some segment on the previous route 

result or chooses some segment that is not contained in the 

previous result. 

4.6 Scalability 
We mention two design issues where scalability comes into play. 

1. Tweet Digest. NaviTweet server can easily become 

bottlenecked if a local digest is generated on the server for 

each driver. Therefore, we chose to create tweet digest for 

each VSN group and leave the final selection of the voice 

tweets to be played to the client. This greatly reduces the 

number of tweets a client needs to prune and lowers the load 

of the server as well. 

2. Tweet meta-data. The metadata contains a messageid and a 

timestamp of the voice tweet and is stored in an RDBMS, 

whereas the voice tweet audio data is stored as a file on a file 

system. Having generated the final local digest, NaviTweet 

client retrieves the audio file of each tweet by opening an 

input stream on the URL locally calculated from the 

messageid and timestamp of the tweet. Storing the audio data 

as files organized by timestamp makes archival and clean up 

much easier, knowing the fact that voice tweets are transient 

resources. 



5. IMPLEMENTATION 
We elaborate our work on a freely available open-source GPS 

navigator, OsmAnd. As a result, our code base only accounts for 

around 3000 lines of Java code and 2000 lines of PHP, much less 

than that expected if everything is built from scratch. 

NaviTweet server runs on one Amazon EC2 instance using 

Ubuntu 12.04 LTS. It stores all the metadata in MySQL 5.5, and 

keeps the voice tweet files on local disk. NaviTweet client runs on 

Android 2.2+. We use Google Map for VSN group management, 

and Android speech-to-text recognition and text-to-speech 

synthesizing library to quickly implement the features that we 

want. We use OpenStreetMap as our map data to do the pruning 

and routing. Beyond this, the availability of the source code of 

OsmAnd and maps was instrumental for implementing the 

service. 

 

Figure 5. Comparison of traditional routing with NaviTweet 

 

When posting voice tweets and downloading tweet digests to and 

from the server, there is a network usage cost. Because we limit 

the length of each tweet message to 15 seconds, an audio message 

usually requires about 5 to 8 Kbytes using 3GP compression. By 

default, the digest interval is set at 15 minutes and 4 tweets are 

played for each digest, so if a user makes 20 voice tweets every 

day, they will use approximately 6.7 Mbyte every month, which is 

a reasonable amount of traffic these days. 

As a prototype and a first step toward integrating shared driving 

experiences into the routing engine, NaviTweet provides a smarter 

way to navigate. Figure 5 demonstrates a real life example of how 

NaviTweet can help drivers find a better route. We plan to do 

more sophisticated user studies in the near future. 

In the current implementation, to record a voice tweet when a user 

observes a road event, the user would wave their hand over the 

screen to trigger the proximity sensor. A microphone image will 

immediately cover the screen to prompt recording. The user 

simply records a voice tweet by speaking. The user finishes their 

recording by touching any part of the navigation interface screen. 

If the recording exceeds 15 seconds, it ends automatically. 

NaviTweet takes care of sending the voice tweet to the server 

automatically in the background. At fifteen minute intervals, a 

NaviTweet client automatically generates a new tweet digest 

containing four tweets and plays them in distance-ascending order 

to the user. Rerouting starts based on the feedback the user gives 

after hearing the tweet digest. 

6. RELATED WORK 
The traditional online social networking services such as 

Facebook, LinkedIn and Twitter focus essentially on providing a 

foundation of social relations among users who have a common 

interest without restrictions to where the user is located. Twitter, a 

combination of an online social networking and microblogging 

service, allows users to post up to a 140 character text-based 

message called “tweet” so that the user can join a group to follow 

a conversation, opinion, story, idea, news or whatever interests the 

user. Recently, automobiles are integrating social networking 

services. Developed by Ford, the Twittermobile [9] is a car that 

can send and receive Twitter messages. Twitter messages sent out 

by the car can be any type of information ranging from just the 

driver’s mood to informative real-time traffic notices. Also, 

features such as automatic check-ins via Foursquare or Facebook 

apps are included. Toyota [10] has also worked on integrating 

short message social media into the vehicle’s dashboard. Both 

manufacturers are trying to integrate short message social services 

with cars, yet both are text-based messages. On top of that, the 

Toyota’s version is a predefined template type, for example, “I am 

going to [destination] and arriving at [time],” where message 

types have limitations. 

In [7], we presented a framework for VSN where people who are 

physically adjacent to each other construct a periodic virtual 

social relation. This is an integration of social and vehicular 

networks whose goal is to virtually build a community for 

commuters. We built RoadSpeak, a voice chatting system over 

vehicular social networks, which can be used by daily driving 

commuters or a group of people who are on a commuter bus or 

train. NaviTweet, in a similar way, is used to post or listen to 

traffic related voice tweets, so that the driver's preferences can be 

incorporated into the navigator's route calculation. 

The award winning app for Ford apps competition was presented 

to students at the University of Michigan. The app is called 

Caravan Track [11] and has been designed to allow drivers to 

share vehicle and route information among a group of cars. The 

idea was derived from the Citizens Band Radio (CB Radio) [12], a 

short-range radio communications system, where traditionally 

truck drivers used to locally communicate amongst themselves on 

topics such as traffic problems, route directions or any other 

relevant matter. Caravan Track is known also as a tweeting car, 

allowing members of the group to track one another’s specific 

entities such as location, speed and direction. Route alert 

functions based on incidents on the road were also applied. The 

limitation for this work was also the predefined message types 

where the app had a multiple-choice interface to eliminate typing 

for safety purposes. 

Waze [13] is another popular navigation app that uses crowd-

sourcing to provide real-time routing and traffic information along 

with functions to improve and edit the map itself. Here, social 

networks are used to send predefined push button messages 

stating incidents like the degree of traffic, police speed traps or 

accidents. Chatting functions similar to RoadSpeak [7] are also 



available (called ChitChat). Waze incorporates social feed; 

however, the feed is used in the calculation of the best route and 

does not accommodate human preference factors to the route 

selection. 

7. DISCUSSION AND FUTURE WORK 
There are many issues that require additional research. Building 

the right user-interface to enable drivers to interact with the social 

navigator, while driving, is a non-trivial task. Issues such as driver 

behavior, safety and cognitive load have to be further explored 

through a systematic user study. 

Like any other social feeds, for the system to work, a suitable 

amount of users are necessary. Incentives for tweeters such as 

“likes” or points are used in existing apps such as Waze [13] so 

that many users contribute tweets for the system to work. Such 

mechanisms can also be integrated in our implementation to 

properly incentivize tweets. For instance, acquired points (or 

reputation) of a driver can be used to give priority to their voice 

tweets in the selection for tweet digests.  

Selecting the most relevant tweets to be included in the tweet 

digest can be particularly difficult when the number of tweets is 

large. We plan to explore various approaches to achieve tweet 

selection either automatically, using additional criteria such as 

user reputation, or semi-automatically, by crowdsourcing this task 

to people willing to help in real time. Drivers’ feedback can also 

help to eliminate improper or malicious tweets. For instance, 

when tweets are in large number, multiple tweet digests can be 

initially created for the same group and distributed to different 

drivers in order to collect feedback to select the quality tweets.  

Finally, security, privacy, malicious users and last but not least 

passenger safety [14] must also be considered. As future work, we 

plan to evaluate our NaviTweet on roadways and extend the social 

voice tweets to link sensor networks (detect environmental 

pollution) with social networks. 

8. CONCLUSION 
This paper introduced the social vehicular navigation system that 

uses driver-provided traffic related voice tweets, an improvement 

over the current navigation systems that do not have such a 

feature. Many of the newer navigators do apply real-time traffic 

data for dynamic route calculation. However, only-computer-

based route calculation may not be satisfactory in all situations. 

Thus, NaviTweet collects voice tweets from those who are in the 

same vehicular social network groups to allow drivers to share 

driving experience and decide routes based on personal preference, 

and suggest routes to the navigation system. We presented the 

design of NaviTweet, where voice feeds are collected and tweet 

digests are sent to users in the social group. The driver then 

instructs the social navigation system to avoid or choose certain 

routes when calculating a personalized route. 
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ABSTRACT
Ride-sharing on the daily home-work-home commute can
help individuals save on gasoline and other car-related costs,
while at the same time reducing traffic and pollution in the
city. Work in this area has typically focused on technology,
usability, security, and legal issues. However, the success of
any ride-sharing technology relies on the implicit assump-
tion that human mobility patterns and city layouts exhibit
enough route overlap to allow for ride-sharing on the first
place. In this paper we validate this assumption using mobil-
ity data extracted from city-wide Call Description Records
(CDRs) from the city of Madrid. We derive an upper bound
on the effectiveness of ride-sharing by making the simpli-
fying assumption that any commuter can share a ride with
any other as long as their routes overlap. We show that sim-
ple ride-sharing among people having neighboring home and
work locations can reduce the number of cars in the city at
the expense of a relatively short detour to pick up/drop off
passengers; e.g., for a 0.6 km detour, there is a 52% reduc-
tion in the number of cars. Smartphone technology enables
additional passengers to be picked up along the way, which
can further reduce the number of cars, as much as 67%.

1. INTRODUCTION
Ride-sharing is an effective way to reduce the number of

cars on the streets in order to address both individual and
city-wide issues. On one hand, individuals are interested in
reducing the cost of their car usage and save on gasoline
and other usage-based costs [2]. On the other hand, cities
are interested in reducing traffic and pollution and provide
incentives (e.g. reserved carpooling lanes) to encourage com-
muters to share rides. In recent years, a plethora of web-
or smartphone-based solutions have emerged in order to fa-
cilitate intelligent traffic management [18], [17], [5], and in
particular ride-sharing. Systems like carpooling.com, and
eRideShare.com have attracted a few million users in Eu-
rope and the US but the technology hasn’t been widely
adopted yet.
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Ride-sharing systems started in the US during WW-II.
These early “word-of-mouth” systems required predefined
rendezvous and prior familiarity among commuters, which
limited the number of neighbors a person could share a
ride with. More recently, web-based solutions, such as
Amovens.com, allow drivers and passengers to advertise
their interest in ride-sharing, thereby increasing the chances
of finding a match, but still generally require predefined ren-
dezvous. Using smartphones with ride-sharing apps, such
as Avego.com, allows drivers and passengers to be matched
opportunistically without pre-arranged rendezvous. Such
systems are promising but it is still unclear whether they
will be widely adopted.

Work in the area has focused on technological, usability,
security and legal aspects [16] [20]. Previous research has
shown that ride-sharing has economic advantage over driv-
ing alone, and that is more spatially flexible and less time
consuming than public transportation, but it is not sure if
this advantages are strong enough to entice commuters to
switch to ride-sharing; privacy and flexibility are major rea-
sons why the vast majority of commuters choose to drive
alone. Many believe that current technology provides in-
sufficient levels of security and monitoring to allow people
to travel safely with strangers; others believe that it is only
an unsolved bootstrapping problem that keeps the technol-
ogy from booming. Most people, however, implicitly assume
that human mobility patterns and the layouts of today’s
cities exhibit enough route overlap for ride-sharing to take
off, once the aforementioned issues are solved.

In this paper, we validate this underlying assumption,
which is crucial for the success of any ride-sharing system.
To this end, we use home/work locations, for a large popu-
lation of a city, extracted from a CDR dataset; the inferred
home and work locations are used to match people in groups
that share the same car. The exact potential of ride-sharing
depends on many factors, not all of which can be known at
the scale of our study (e.g., behavioral traits). Our approach
is to focus only on quantifiable factors and mask all other
unknown factors by making the simplifying assumption that
ride-sharing is constrained only by the distance of end-points
and time. Therefore, our quantification is actually an upper
bound of the exact potential of ride- sharing that may be
constrained by additional factors.

Our contributions are as follows. We consider two sce-
narios for ride sharing, and for each scenario we develop an
efficient algorithm to do the matching, and quantify the ben-
efit of ride-sharing in terms of reduction in the number of
cars. Note that, the theoretical limit of car reduction is 75%



(all users are matched in cars of 4 and only 25% of the cars
are used). The scenarios and results are summarized below.
EndPoints RS: In this scenario, we consider ride-sharing

only among users with nearby (i.e., within distance δ) home
and work locations. We formulate the problem of matching
users so as to minimize the number of cars, and serve all
rides among neighbors that are within distance δ in both
home and work location, as a Capacitated Facility Loca-
tion Problem with Unsplittable Demand. Since the latter
is an NP-hard problem, we develop an efficient heuristic al-
gorithm that we name EndPoints RS. When applied to our
CDR dataset, the algorithm provides an upper bound to
the ride-sharing potential benefits: 52% car reduction for δ
to 0.6 km, if we assume that drivers wait for passengers as
long as necessary. Although unrealistic, this puts an upper
bound on the savings of ride-sharing based only on spatial
information about home and work. When we introduce time
constraints into the picture, we find that the effectiveness of
ride-sharing becomes proportional to the driver/passenger
waiting time for a pick-up, and inversely proportional to the
standard deviation of departure times. For example, with
a standard deviation of 10 minutes, a wait time up to 10
minutes, and a δ of 0.4 km there is a 26% reduction of cars.
EnRoute RS: Next, we compute the routes from home to

work using Google Maps and allow en-route pick-ups. First,
we match neighbors using the EndPoints RS algorithm.
Then additional passengers are picked up along the way,
which clearly increases the effectiveness of ride sharing,
using an iterative algorithm, which we refer to EnRoute
RS. The same δ and τ applied to end points are applied
to en-route pick-ups too. For example, with a δ of 0.6 km
the effectiveness on savings jumps from 52% for EndPoints
RS to 67% for EnRoute RS. Taking also into account the
randomness in departure times, the corresponding numbers
are 35% for EndPoints RS and 56% for EnRoute RS.

The rest of this paper is organized as follows. In Section II
we briefly describe the CDR dataset that is the basis of this
study. In Section III, we present our methodology for infer-
ring the Home Work location for individual users. In Section
IV and Section V we consider matching based on end points
(EndPoints RS) and en route (EnRoute RS) respectively. In
particular, we present efficient matching algorithms and we
evaluate the benefits of ride-sharing when applying these al-
gorithms on the CDR dataset. Section VI discusses related
work. Section VII concludes the paper.

2. OUR CDR DATASET
A valuable asset of this study is the Call Description

Records or CDR Dataset, which we obtained from a large
cellphone provider. It contains 820M calls from 4.7M mobile
users, during a 3-month period, in the metropolitan area of
Madrid, Spain.

CDRs are generated when a mobile phone makes or re-
ceives a phone call or uses a service (e.g., SMS, MMS, etc.).
Information regarding the time/date and the location of the
nearest cell tower are then recorded. More specifically, the
main fields of each CDR entries are the following: (1) the
originating number (2) the destination number (3) the time
and date of the call (4) the duration of the call (5) the lat-
itude and longitude of the cell tower used by one, or both,
phones numbers — cell phone companies save CDR records
only for their customers. These records are logged for pric-
ing purposes, so they come at no extra cost to the cellular

(a) Headquarters of Tele-
fonica in Madrid

(b) Residential Area:
Latitude:40o30′13.45′′,
Longitude:3o38′07.69′′

Figure 1: Example of strictly residential and strictly
working areas

Figure 2: Characterizing Madrid based on our re-
sults

operator. Note that no information about the exact position
of a user is known, since cell phone data provide coarse loca-
tion accuracy — a few hundred meters for city center, and
up to 3 km in rural areas. For privacy reasons, no contract or
demographic data were made available to us, and the orig-
inating and destination phone numbers were anonymized.
More details about CDRs can be found in [15].

3. INFERRING HOME AND WORK
We use an existing methodology to infer the Home/Work

locations of 270K individuals in our CDR dataset. This
subset of individuals is then used as input to the match-
ing algorithms, discussed in the following section, and the
benefit of ride-sharing (reduction in the number of cars) is
computed.

3.1 Methodology
We apply the methodology of Isaacman et al. [10], which

identifies important places (i.e., places that the user visits
frequently and spends a lot of time) in the life of mobile
phone subscribers, based on (i) CDR data and (ii) ground
truth for a subset of subscribers. More specifically, in [10],
the recorded cell towers of a user are clustered to produce
the list of places that she visits. Then, regression analysis
is applied on the ground truth users (their identified clus-
ters and their true important locations) to determine the
features that distinguish clusters that represent important
places. Such features include: (1) the number of days that
the user appeared on the cluster (2) the duration of user ap-
pearances on the cluster (3) the rank of the cluster based on
number of days appeared. Once important locations have



(a) A ground truth user

(b) Zooming at
home

(c) Zooming at work

Figure 3: The red marks show the recorded cell tow-
ers for the user, while the blue marks the clusters.
The white numbers next to each mark indicate the
number of weekdays and the number of weekends
the user appeared in that location. Also, the size of
each mark is proportional to the number of days the
user has appeared in that location.

been identified, the authors choose which of these locations
is home and which is work. The best features to make this
decision are: (4) number of phone calls between 7PM - 7AM
(5) number of phone calls between 1PM - 5PM, referred to
as Home Hour Events and Work Hour Events respectively.

In this paper, first, we filter out users for whom we sim-
ply do not have enough data: i.e. users with less than 1
call per day on average, or less than 2 clusters with 3 days
of appearance and 2 weeks of duration. Then, we tune the
methodology of [10] in our case. More specifically, we build
two classifiers, one for home and one for work, and we train
them using the 5 features described above and the ground
truth described in 3.2. Once the training is complete, we
apply the classifiers to the rest of the users. This was nec-
essary since our ground truth contains only home and work
location, while the ground truth of [10] contained other im-
portant locations too. Finally, after classification, we keep
only the users who have only one location identified as home,
and a different location identified as work, since we are in-
terested only in commuters.

3.2 Obtaining the Ground Truth
In [10], a small set of 37 volunteers who reported their

most important locations, including home and work. This
information was used to train the classifiers that were ap-
plied to the remaining dataset of around 170K mobile phone
users.

In our case, we did not have access to the actual phone
numbers. We obtained our ground truth for a select subset
of users based on our knowledge of the city of Madrid. In
particular, due to its development pattern in the last 20
years, Madrid has many areas lying around its outer ring
highways that are strictly residential and other ones that
are strictly industrial. An example of the former are large
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Figure 4: Assuming users u leaves home at 9:10, the
users departing with 10 min difference are in the
green area under the curve.

residential development projects in previously isolated areas
like the one depicted in Fig. 1. Such areas offer a clear
distinction between home and work and can be exploited to
build our “ground truth”. To this end, we selected 160 users
that appeared for many days in only one such residential
area during 7PM - 7AM (assumed to be “home” hours), and
only one such industrial area during 1PM - 5PM (assumed
to be“work”hours). Then, the location inside the residential
area is pointed as the user’s Home, while the location inside
the industrial area is pointed as the user’s work.

For each one of the 160 users, we visually inspected their
recorded locations through Google Earth for a sanity check.
In Fig. 3 we show one of these users: this person lives in
the location shown in Fig. 3(b), which is the top right blue
marker of Fig. 3(a), and work on the location shown in Fig.
3(c), which is the bottom left marker of Fig. 3(a).

3.3 Results
Applying the above methodology to our CDR dataset,

we are able to infer the home and work locations of 270K
individual users.

The following comparison provides a sanity check. In
Fig. 2 we break the city of Madrid into a grid and paint each
square of the grid with a combination of green and red. If the
number of inferred home locations is higher than the num-
ber of work locations, then the color of the square is closer
to green, otherwise it is closer to red. We use an existing
study [15] to obtain a characterization of locations in Madrid
(industrial, commercial, nightlife, leisure and transport, res-
idential). We annotate such areas in Fig.2 using numbered
circles, e.g., the headquarters of Telefonica in Madrid is one
of the two red circles on the top of the figure. We observe
that the squares that we painted red contain more circles
indicating industrial and commercial zones, than residential
zones. Also, squares painted green contain more residential
zones than industrial zones.

However, due to privacy reason, validating home/work re-
mains challenging. We are currently in the process of ob-
taining permission to compare our results with the billing
database of the operator and compute our detection success
ratio at the level of postal code.

4. RIDE WITH THY NEIGHBOR
Here we formulate the problem of EndPoints RS i.e., ride-

sharing among people that live and work nearby. We develop
a practical algorithm, apply it to the 270K users with esti-
mated home/work locations, and compute the number of
cars that can be reduced under different scenarios.

4.1 Formulation
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Let V denote a set of potential drivers and c(v) the ca-
pacity, in terms of available seats, of the car of driver v ∈ V
and p(v) a penalty paid if driver v is selected for driving
his car and picking up passengers. Let h(v, u) denote the
geographic distance between the home locations of drivers v
and u and w(v, u) the corresponding distance between their
work locations. Let δ denote the maximum distance between
a driver’s home/work and the home/work of passengers that
he can pick up in his car, i.e., v can have u as passenger only
if: max(h(u, v), w(u, v)) ≤ δ

Let d(v, u) denote a virtual distance between v and u de-
fined as follows:

d(v, u) =





h(v, u) + w(v, u),
if max(h(v, u), w(v, u)) ≤ δ

∞, otherwise

Our objective is to select a subset of drivers S ⊆ V , and
find an assignment a : V → S, that minimizes P (S)+D(S),
the sum of penalty and distance costs, while satisfying the
capacity constraints of cars. The two costs are defined as
follows:

P (S) =
∑

v∈S

p(v) and D(S) =
∑

v∈V

d(a(v), v)

where a(v) ∈ S is the driver in S that is assigned to pick up
passenger v (can be himself if v is selected as a driver). By
setting p(v) > 2δ · c(v) we can guarantee that an optimal
solution will never increase the number of cars used in order
to decrease the (pickup) distance cost between a driver and

its passengers. The above problem is an NP-hard Capaci-
tated Facility Location Problem with Unsplittable Demand in
metric distance: the set of potential drivers corresponds to
the set of locations; the set of chosen drivers corresponds to
opened facilities; car capacity corresponds to facility capac-
ity; distance d(v, u) corresponds to the cost of assigning a lo-
cation v to the facility u. Efficient approximation algorithms
are known for this type of facility location problem [14].

The above formulation finds the minimum number of cars
needed when there are no timing constraints around depar-
ture and return times from home and work. Next we refine
the formulation to include time. We assume that departures
from home and work follow Gaussian distributions, centered
at 9 am and 5 pm respectively, with standard deviation σ.
Also, we introduce the wait tolerance τ that captures the
maximum amount of time that an individual can deviate
from his normal schedule in order to share a ride, Fig. 4.
More specifically, if LH(u) expresses the time a person u
leaves home to go to work, and LW (u) expresses the time
she leaves work in order to return to home. Then, two people
u and v, can share a ride only if:

max(|LH(u)− LH(v)|, |LW (u)− LW (v)|) ≤ τ

The introduction of the temporal constrains will only change
the virtual distance between v and u :

d(v, u) =





h(v, u) + w(v, u),
if max(h(v, u), w(v, u)) ≤ δ
AND |LH(u)− LH(v)| ≤ τ
AND |LW (u)− LW (v)| ≤ τ

∞, otherwise

4.2 A practical algorithm
In this section we show how to modify the existing ap-

proximation algorithm [14] for the facility location problem
described above and obtain a faster heuristic that can cope
with the size of our data set.

The existing algorithm starts with an initial random so-
lution and improves it iteratively via local search. At each
iteration there are O(n2) candidate solutions, where n cor-
responds to the number of potential drivers, and for each
one of them we find the assignment (passengers to drivers)
that will minimize the cost; this can be done in polyno-
mial time by solving an appropriately defined instance of
the transportation problem. The algorithm terminates when
local search cannot find a better solution.

We modify the algorithm in three ways. First, since the
quality of the solution depends mostly on the number of
drivers, we try to keep that number as low as possible.
Therefore, we use the b-matching [3] algorithm to generate
the initial solution, instead of generating it randomly. The
input to the b-matching algorithm consists of the set of po-
tential drivers V , a function p(v) that defines the set options
for a potential driver v i.e. p(v) = {u|d(u, v) < inf}, and
a global ordering of the potential drivers, O. The global or-
dering will be based on the number of options; the fewer the
options, the higher the position in O. By using b-matching
with a global order we are guaranteed to find a solution in
O(n) time [3]. For each match generated by b-matching, we
assign the potential driver with the most occupied seats to
drive; we make sure that every user in V appears in only
one car. This solution proves much better than the random



one by paying O(nlog(n)) for sorting the users to generate
the global preference list and O(n) for the matching.

Second, solving a transportation problem with 270K users
is hard. Therefore, we need to modify the local search steps
of the approximate algorithm. Given an initial solution we
leave the users commuting in cars of four as they are and
search for better assignments only for the rest. This way the
size of the transportation problem will be reduced and that
would speed up the process of generating the assignment.

Third, reducing the size of the transportation problem is
not enough; we also need to reduce the neighborhood of
candidate solutions. Given an initial set of drivers, S, we
create a fixed size neighborhood, where each solution S′ is
created by doing random changes in S. The reason why we
do that is because considering all potential solutions that
differ from S only by one, means that we have to examine
O(n2) candidate solutions; that makes each iteration very
expensive. Therefore, the fixed size solution helps us speed
up the time we spend in each improvement step.

Without the above modifications it would be impossible
to solve the problem in real time. Solving an instance of
the transportation problem for 270K users required a couple
of hours for δ = 0.6 km, and even more when δ = 0.8 or
δ = 1.0 km. Therefore, solving O(n2) such problems for a
single iteration becomes too expensive. Moreover, most of
the time the solution of the b-matching algorithm was so
good that the gain from the improvement steps would be
insignificant.

4.3 Results
A this point we are ready to calculate the effectiveness of

EndPoints RS in the Madrid metropolitan area. We reduce
the size of our dataset by randomly selecting only 60% of
the users.We do that to capture the fact that only 60% of
the population has a car in the area of Madrid [1]. We also
show results for the case that half of the car owners use their
car at their daily commute (the results are quantitatively
close). For the remaining of the section, we will refer to users
who can share rides with a specific user v, as options of v.
Subsequently we compute the percentage-wise reduction of
cars

success =
#(init. cars)−#(ride-sharing cars)

#(init. cars)
· 100

using the following algorithms:
Absolute upper bound: Given our definition of success, we

cannot do better than 75%. This is the case when all cars
carry 4 people.

Tighter upper bound: All users with at least one ride-
sharing option, are assumed to commute in cars of 4.

Time-indifferent matching (τ =∞): This is the practical
algorithm described in Sect. 4.2

Time-aware matching: This is the version of the algorithm
that considers timing constraints under the assumption of
normally distributed departure times.

In Fig. 5 we see what happens when the drivers are willing
to tolerate a detour of δ and deviate τ minutes from their
departure times, in order to share the same car with another
individual. The results show that with even modest delay
tolerance of 10 minutes and detour distance of 0.6 Km (a
couple of city blocks) 40% of the cars can be saved. This
is more than half of the absolutely optimal performance.
Increasing either of the two parameters improves the success
ratio. The diminishing improvement with increasing δ can
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Figure 7: Benefits from EnRoute RS.

be explained by the number of options users have given the
distance δ. In Fig. 6 the red color represents the users with
no options, the blue color the users with 1 or 2 options, and
the green color the users with 3 or more options. We can
see that the success of ride-sharing is proportional to the
number of users who have 3 or more options; since, as we
can see from Fig . 5 and Fig . 6, they increase in a similar
way.

5. EN-ROUTE RIDE-SHARING
The effectiveness of ride-sharing can be greatly enhanced

by picking up additional passengers en-route. For example
a driver that lives in a sparsely populated area might not
have any neighbors to fill his seats but once he enters the
city he might be able to pick several passengers that have
routes “covered” by his own. To quantify the benefits of
en-route ride-sharing we obtain routes from Google Maps
for our dataset of 270K users and extend the algorithm of
Section 4.2.

5.1 En-route algorithm
We use an iterative algorithm with the following steps in

each iteration.

1. Run the basic EndPoints RS algorithm.

2. Exclude from the solution cars that get fully packed (a
car of 4). Then order cars in decreasing order of pas-
sengers and start “routing” them across Madrid using
data from Google maps.

3. When the currently routed car v meets a yet un-routed
car v′, then v is allowed to steal passengers from v′ as
long as it has more passengers than v′ (a rich-get-richer
strategy). Whenever a routed car gets fully packed it
is removed from further consideration. Whenever a car
with a single passenger is encountered the number of
cars is reduced by one.

This is repeated until there is no possible improvement.
It can be shown (omitted for lack of space) that the rich-
get-richer rule leads to convergence.

5.2 Results
Fig. 7 shows the performance of EnRoute RS. To make

the comparison with EndPoints RS easier we summarize
results from both in Table 1: one can verify the significant
improvement obtained through EnRoute RS, which is several
cases comes within 10% of the optimal performance.



6. RELATED WORK
Mining mobility patterns from wireless traces has recently

received a lot of attention. Of particular interest to this work
is the mining of mobility patterns from CDRs. The best
examples of this area are the work of Gonzalez et al. [8], who
use CDRs in order to characterize the distribution of human
trajectories, and the work of Isaacman et. al. [10] [11] [12]
[13] who use CDRs to characterize various aspects of human
mobility, such as important places, ranges of travel, etc. The
previous examples use only the location information, but
recent work [4] [6] also exploits the social graph inside the
CDRs also (who calls who). Finally, another example of
human mobility form CDR data is [7].

To the best of our knowledge this is the first work on ride-
sharing applications based on CDRs. Other ride-sharing
applications, that exploit wireless traces, use mostly GPS
[9] [19]. The work presented in [9] presents a frequency-
based route mining algorithm designed for GPS data and is
used to extract frequent routes and recommend ride-sharing
plans using the GPS traces of 178 individuals. Trasarti et
al. [19] use GPS data to build the mobility profiles of 2107
individuals and match them based on the similarities of their
mobility profiles; they also apply their algorithms to a GSM-
like data set, which they synthesize by reducing the size of
their GPS data set.

Past work on Carpooling has be focused mainly in char-
acterizing the behavior of carpoolers, identifying the indi-
viduals who are more likely to carpool and explaining what
are the main factors that affect their decision on whether to
use carpooling or not [16]. Also, the question whether ride-
sharing can reduce congestion has been asked before [20].
But, the authors of [20] assumed uniform distribution of
home and work locations and concluded that ride-sharing
has little potential for congestion reduction. On the con-
trary, we make no assumption about the distribution of
home and work locations in a city, but infer such information
from a Call Description Dataset, and show that ride-sharing
has a lot of potential for reducing the number of cars from
the streets of a city.

7. CONCLUSION
In this paper, we used CDR data to derive an upper bound

for the potential of ride-sharing. The results indicate that
there exists huge potential in densely populated urban areas,
such as the city of Madrid in Spain. This motivates working
on the technological challenges involved in facilitating car
sharing. In future work, we plan to (i) extend our study in
other cities, (ii) take additional aspects into account, such
as the structure of the call graph, (iii) obtain additional in-
formation for ground truth and (iv) deploy an actual system
that mines CDR and facilitates car sharing.
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