THE 21ST ANNUAL INTERNATIONAL WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS
(ACM HOTMOBILE 2020)

How to beat the best Android Ul testing tools?
An infrastructure approach

Wenyu Wang!, Tao Xie'?, Tianyin Xu®

1University of Illinois at Urbana-Champaign
ZPeking University

1. Extended Abstract

Automated User Interface (UI) testing has been widely
used for quality assurance during Android app develop-
ment. Numerous Android Ul testing tools have emerged
from both the research community and the industry af-
ter years of development. Monkey, a randomized An-
droid UI input generator developed by Google, is one
of the earliest efforts in this direction. Authors of vari-
ous tools developed after Monkey have all claimed that
their tools can perform superiorly to Monkey based on
more sophisticated app modeling and analysis; however,
recent work [1, 2] shows that many of these tools barely
outperform Monkey, despite their more advanced design.
The arising question is how to improve these testing tools
to achieve better testing effectiveness in practice?

As a step toward this goal, we propose improving an
important part of Android UI testing tool implementa-
tion that has been constantly overlooked by researchers
and practitioners: the infrastructure support, which pro-
vides interfaces to enable tool developers to obtain nec-
essary runtime information and take actions accordingly
on the app under test. While such support is supposed
to be entirely provided by the Android framework, it
can make huge impacts on Ul testing tools’ overall ef-
ficiency, contributing to their surprisingly disappointing
testing effectiveness. For example, in our experiments,
the widely-used official Android UI testing framework
UIAutomator spends 2.7 seconds on average in taking a
snapshot of the current UT hierarchy on some apps. Such
interface can be invoked thousands of times during test-
ing. While the app under testing is mostly idle, the tool
has to wait until the interface finishes execution before
moving to the next step. As a result of inefficiency, much
of testing time budget is wasted.

We focus on improving three main interfaces used as
primitives of existing UI testing tools: (1) UI hierarchy
capturing, (2) Ul event execution, and (3) Ul event mon-
itoring. While UI hierarchy capturing and UI event ex-

ecution are fundamentally required by most Android UI
testing tools to perform their duties, UI event monitoring
provides additional benefits for debugging and reusing
the generated test input traces. Specifically, we design
and build a new Android UI testing infrastructure named
TOLLER that performs the tasks underlying these three
interfaces directly within the same DalvikVM as the app
code. TOLLER avoids the overhead brought by com-
plicated Android framework internal logistics as well as
Inter-Process Communications (IPC) among the app, the
Android framework processes, and the on-device agent
employed by UIAutomator.

To measure the end-to-end benefit of TOLLER, we in-
tegrate TOLLER with a production-quality Android Ul
testing tool WCTester [3] and conduct experiments with
six widely-used industrial apps. TOLLER reduces the av-
erage time cost of obtaining UI hierarchy snapshots from
997ms to merely 33ms—a more than 30x speedup. The
average number of Ul snapshots taken could increase
from 6307 to 25099 in three hours of testing. Integrating
with TOLLER, WCTester achieves a much higher aver-
age method coverage, from 22.30% to 27.61%, in three
hours of testing. According to our previous study [2],
such degree of improvements on some apps reaches or
even outperforms some of the best-performing Ul testing
tools equipped with sophisticated modeling and analysis.

References

[1] CHOUDHARY, S. R., GORLA, A., AND ORSO, A. Auto-
mated Test Input Generation for Android: Are We There
Yet? In ASE (2015).

[2] WANG, W., L1, D., YANG, W., CA0, Y., ZHANG, Z.,
DENG, Y., AND XIE, T. An Empirical Study of An-
droid Test Generation Tools in Industrial Cases. In ASE’18
(2018).

[3] ZENG, X., L1, D., ZHENG, W., XIA, F., DENG, Y., LAM,
W., YANG, W., AND XIE, T. Automated Test Input Gen-

eration for Android: Are We Really There Yet in an Indus-
trial Case? In FSE’16 (2016).



